

ПРОТОН-ЭЛЕКТРОТЕКС

Низкие динамические потери Малый заряд обратного восстановления Разветвленный управляющий электрод для высоких скоростей нарастания тока

Быстродействующий Импульсный Тиристор Тип ТБИ573-2000-12

Максимально допустимый средний ток в открытом состоянии		I _{TAV}	2000 A	
Повторяющееся импульсное напряжение в закрытом состоянии		U _{DRM}	10001200 B	
Повторяющееся импульсн	Повторяющееся импульсное обратное напряжение			
Время выключения		t _q	10.0, 12.5, 16.0, 20.0 мкс	
U _{DRM} , U _{RRM} , B	1000		1200	
Класс по напряжению	10		12	
T _j , °C	−60+125			

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозначение и наименование параметра			Значение		Условия измерения
Параме	тры в проводящем состоянии				
$I_{\sf TAV}$	Максимально допустимый средний ток в открытом состоянии	A	2000 2376 3644	T_c =92 °C; двухстороннее охлаждени T_c =85 °C; двухстороннее охлаждени T_c =55 °C; двухстороннее охлаждени 180 эл. град. синус; 50 Гц	
I_{TRMS}	Действующий ток в открытом состоянии	А	3140		двухстороннее охлаждение; ад. синус; 50 Гц
	65.0 75.0		$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; $t_p = 10$ мс; единичный импульс; $U_D = U_R = 0$ В; Импульс управления: $I_G = I_{FGM}$; $U_G = 20$ В; $t_{GP} = 50$ мкс; $d_{GG} = 1$ А/мкс	
\mathbf{I}_{TSM}	Ударный ток в открытом состоянии	кА	68.0 78.0	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p = 8.3 мс; единичный импульс; U_p = U_R = 0 B; Импульс управления: I_G = I_{FGM} ; U_G = 20 B; t_{GP} = 50 мкс; d_{IG} / dt = 1 A/мкс
T2+	Защитный показатель	A ² c·10 ³	21100 28100	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p = 10 мс; единичный импульс; U_D = U_R = 0 B; Импульс управления: I_G = I_{FGM} ; U_G = 20 B; t_{GP} = 50 мкс; d_{IG} / dt = 1 A/мкс
I²t	защитный показатель	ACIO	19100 25200	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p = 8.3 мс; единичный импульс; U_D = U_R = 0 B; Импульс управления: I_G = I_{FGM} ; U_G = 20 B; t_{GP} = 50 мкс; d_{IG} / dt = 1 A/мкс

Блокирук	ощие параметры			
U _{DRM} , U _{RRM}	Повторяющееся импульсное обратное напряжение и повторяющееся импульсное напряжение в закрытом состоянии	В	10001200	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; 50 Гц; управление разомкнуто
U _{DSM} , U _{RSM}	Неповторяющееся импульсное обратное напряжение и неповторяющееся импульсное напряжение в закрытом состоянии	В	11001300	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; единичный импульс; управление разомкнуто
U_D , U_R	Постоянное обратное и постоянное прямое напряжение	В	0.6 [·] U _{DRM} 0.6 [·] U _{RRM}	$T_{j} = T_{j \text{ max}};$ управление разомкнуто
Параметр	ы управления	'		
I_{FGM}	Максимальный прямой ток управления	А	10	т_т
U_{RGM}	Максимальное обратное напряжение управления	В	5	$T_j = T_{j \text{ max}}$
P_{G}	Максимальная рассеиваемая мощность по управлению	Вт	8	$T_{j} = T_{j \text{ max}}$ для постоянного тока управления
Параметр	ы переключения			
(di _T /dt) _{crit}	Критическая скорость нарастания тока в открытом состоянии (f=1 Hz)	А/мкс	2500	$T_j = T_{j \text{ max}}$; $U_D = 0.67 \cdot U_{DRM}$; $I_{TM} = 4000 \text{ A}$; Импульс управления: $I_G = 2 \text{ A}$; $U_G = 20 \text{ B}$; $t_{GP} = 50 \text{ мкc}$; $di_G/dt = 2 \text{ A/MKC}$
Тепловые	параметры			
T _{stg}	Температура хранения	°C	-60+50	
T _j	Температура р-п перехода	°C	-60+125	
Механиче	ские параметры			
F	Монтажное усилие	кН	40.050.0	
a	Ускорение	M/C ²	50	В зажатом состоянии

ХАРАКТЕРИСТИКИ

Обозначение и наименование характеристики			Значение	Условия измерения
Характери	стики в проводящем состоянии	-	-	
U _{TM}	Импульсное напряжение в открытом состоянии, макс	В	2.15	T _j =25 °C; I _{TM} =6280 A
U _{T(TO)}	Пороговое напряжение, макс	В	1.456	- T _j =T _{j max} ;
r _T	Динамическое сопротивление в открытом состоянии, макс	мОм	0.090	$0.5 \pi I_{TAV} < I_{T} < 1.5 \pi I_{TAV}$
I _H	Ток удержания, макс	мА	1000	T _j =25 °C; U _D =12 B; управление разомкнуто
Блокирую	щие характеристики			
I _{DRM} , I _{RRM}	Повторяющийся импульсный обратный ток и повторяющийся импульсный ток в закрытом состоянии, макс	мА	300	
(du _D /dt) _{crit}	Критическая скорость нарастания напряжения в закрытом состоянии ¹⁾ , мин	В/мкс	200, 320, 500, 1000, 1600, 2000, 2500	$T_{j} = T_{j \text{ max}};$ $U_{D} = 0.67 \cdot U_{DRM};$ управление разомкнуто

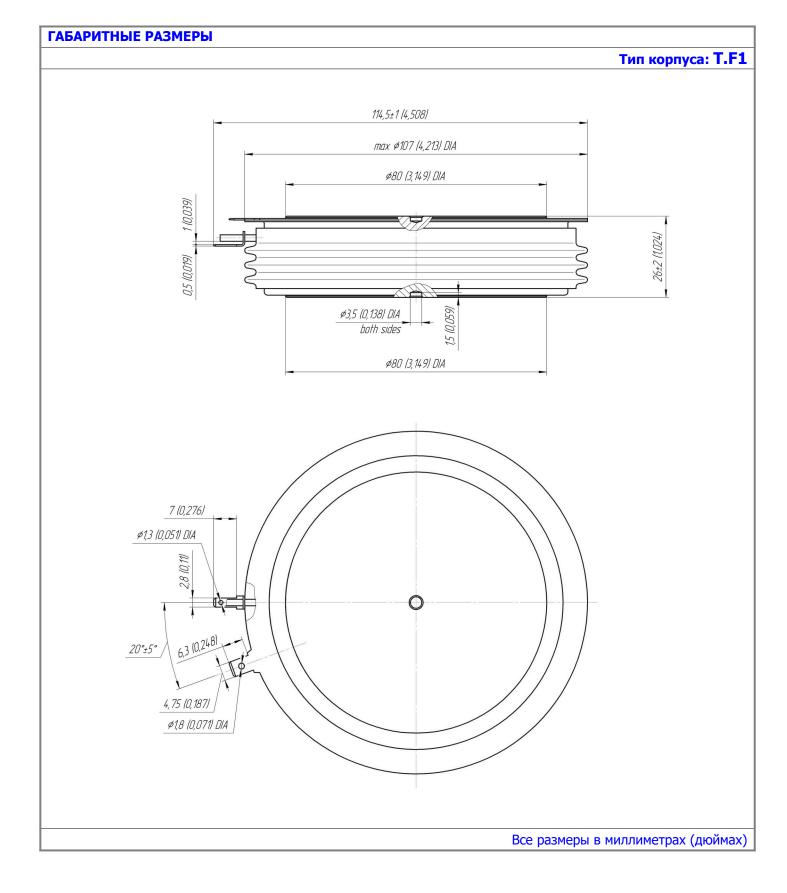
Характе	ристики управления						
U_GT	Отпирающее постоянное напряжение управления, макс	В	3.00 3.00 1.50	li li may	$\cup_{D}=12 \text{ B; } I_{D}=3 \text{ A;}$		
${ m I}_{\sf GT}$	Отпирающий постоянный ток управления, макс	мА	500 300 150	T T	постоя управл	янный ток ления	
U_{GD}	Неотпирающее постоянное напряжение управления, мин	В	0.35	$T_{j}=T_{j \text{ max}};$ $U_{D}=0.67\cdot U_{DRM}$	$T_j = T_{j \text{ max}}$		
\mathbf{I}_{GD}	Неотпирающий постоянный ток управления, мин	мА	65.00	Постоянный	-	равления	
Динами	ческие характеристики						
t _{gd}	Время задержки включения, макс	мкс	0.80	T _j =25 °C; U _D =	=600 B	; I _{TM} =I _{TAV} ;	
t _{gt}	Время включения ²⁾ , макс	МКС	1.60, 2.00, 2.50, 3.20	di/dt=200 A/мкс; Импульс управления: I _G =2 A; U _G =20 E t _{GP} =50 мкс; di _G /dt=2 A/мкс			
	Provid by Mario Volume 3) wave		10.0, 12.5, 16.0, 20.0			$T_j=T_{j \text{ max}}; I_{TM}=I_{TAV};$ $di_R/dt=-10 \text{ A/MKC};$	
t q	Время выключения ³⁾ , макс	MKC	12.5, 16.0, 20.0, 25.0	du _D /dt=200 E	3/мкс;	U _R =100 B; U _D =0.67U _{DRM}	
Qrr	Заряд обратного восстановления, макс	мкКл	220	T_T	1000 A		
t _{rr}	Время обратного восстановления, макс	мкс	3.8	$T_j=T_{j \text{ max}}; I_{TM}=$ $di_R/dt=-50 \text{ A/}$.,	
\mathbf{I}_{rr}	Обратный ток восстановления, макс	A	115	U _R =100 B			
Теплові	ые характеристики						
R _{thjc}			0.0085		1	ухстороннее аждение	
R _{thjc-A}	Тепловое сопротивление p-n переход-корпус, макс	°С/Вт	0.0187	Постоянный ток		паждение со роны анода	
$R_{ ext{thjc-K}}$			0.0153		Охлаждение со стороны катода		
R _{thck}	Тепловое сопротивление корпус- охладитель, макс	°С/Вт	0.0020	Постоянный	ій ток		
Механи	ческие характеристики						
m	Масса, макс	Г	1200				
Ds	Длина пути тока утечки по поверхности	мм (дюйм)	27.37 (1.077)				
D _a	Длина пути тока утечки по воздуху	мм (дюйм)	16.00 (0.629)				

МАРКИРОВКА ТБИ 573 2000 12 А2 РЗ К4 УХЛ2 1 2 3 5 6 7 8 4

- 1. Быстродействующий импульсный тиристор
- 2. Конструктивное исполнение
- 3. Средний ток в открытом состоянии, А
- 4. Класс по напряжению
- 5. Критическая скорость нарастания напряжения в закрытом состоянии
- 6. Группа по времени выключения ($du_D/dt=50$ В/мкс)
- 7. Группа по времени включения
- 8. Климатическое исполнение по ГОСТ 15150: УХЛ2, Т2

ПРИМЕЧАНИЕ

1) Критическая скорость нарастания напряжения в закрытом состоянии


ı	Обозначение	P2	K2	F2	A2	T1	P1	M1
	группы	12	IXZ	LZ	72	1.1	1.1	1.17
	(du _D /dt) _{crit} , В/мкс	200	320	500	1000	1600	2000	2500

²⁾ Время включения

Обозначение группы	T4	P4	M4	K4
t _{at} , MKC	1.60	2.00	2.50	3.20

³⁾ Время выключения (du_D/dt=50 B/мкс)

Обозначение группы	A4	X3	T3	P3
t _a , мкс	10.0	12.5	16.0	20.0

Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, АО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.

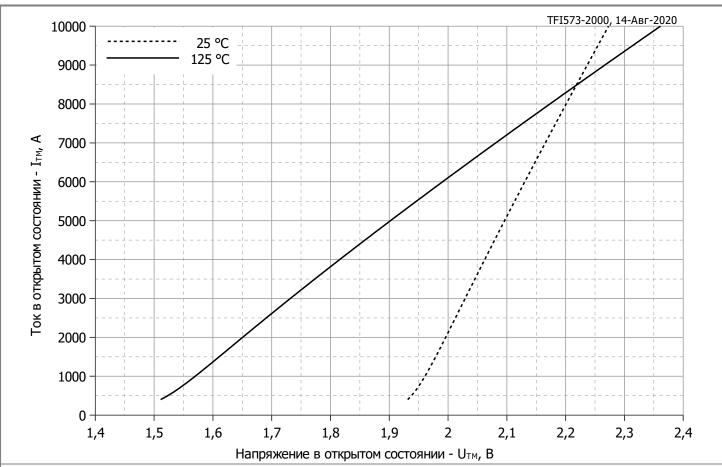


Рис. 1 — Вольт - амперная характеристика в открытом состоянии

Аналитическая функция вольт — амперной характеристики в открытом состоянии:

$$V_T = A + B \cdot i_T + C \cdot \ln(i_T + 1) + D \cdot \sqrt{i_T}$$

	Коэффициенты для графика					
	$T_j = 25^{\circ}C$ $T_j = T_{j \text{ max}}$					
Α	1.73646378	1.15209372				
В	0.00004772	0.00012450				
С	0.03947643	0.07620628				
D	-0.00304265	-0.00737623				

Вольт-амперная характеристика в открытом состоянии (см. Рис. 1).

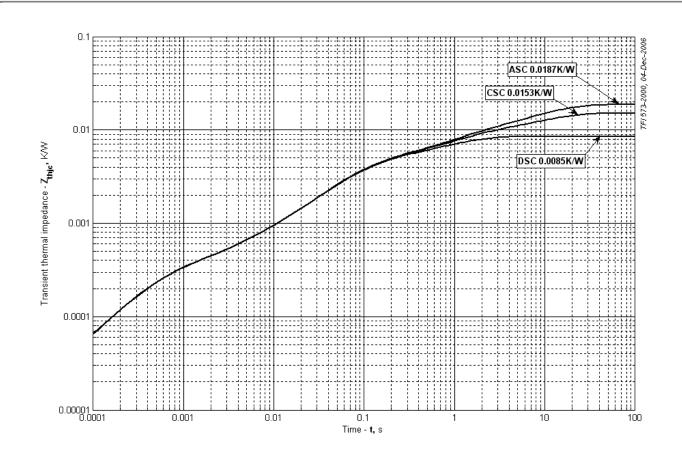


Рис. 2 - Переходное тепловое сопротивление

Аналитическая зависимость переходного теплового сопротивления переход — корпус:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left(1 - e^{-\frac{t}{\tau_i}} \right)$$

Где i = 1 to n, n — число суммирующихся элементов.

t = продолжительность импульсного нагрева в секундах.

 \mathbf{Z}_{thjc} = Тепловое сопротивление за время t.

 ${\bf R}_{{\bf i},\, {f au}_{{f i}}}$ = расчетные коэффициенты, приведенные в таблице.

Постоянный ток, двустороннее охлаждение

i	1	2	3	4	5	6
R _i , K/W	0.0003136	0.003279	0.0001485	0.0007865	0.0002694	0.003703
τ _i , S	1.181	0.06771	0.003331	0.145	0.0004353	0.9499

Постоянный ток, охлаждение со стороны анода

i	1	2	3	4	5	6
R _i , K/W	0.01013	0.004062	0.0009701	0.00306	0.000148	0.0002685
τ _{i,} S	9.747	1.058	0.1302	0.06675	0.003276	0.0004342

Постоянный ток, охлаждение со стороны катода

i	1	2	3	4	5	6
R _i , K/W	0.006619	0.004032	0.0008219	0.003231	0.000147	0.0002716
τ _i , S	9.745	1.026	0.143	0.06778	0.00342	0.0004396

Модель переходного теплового сопротивления переход - корпус (см. Рис. 2)

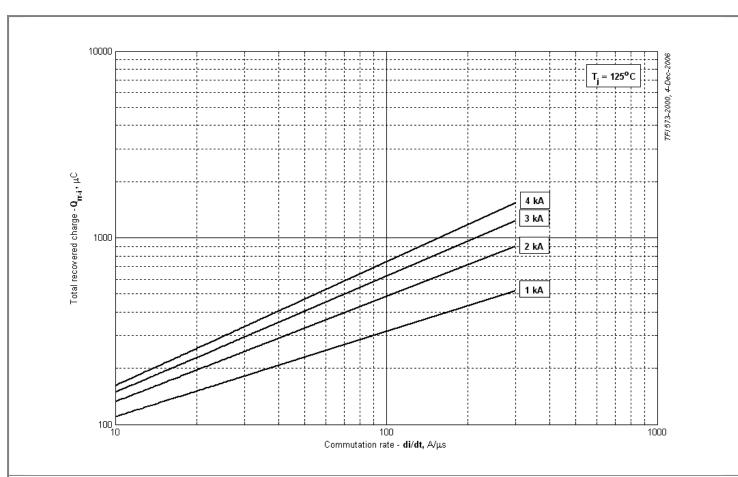


Рис. 3 — Максимальный интегральный заряд обратного восстановления, Q_{rr-i}

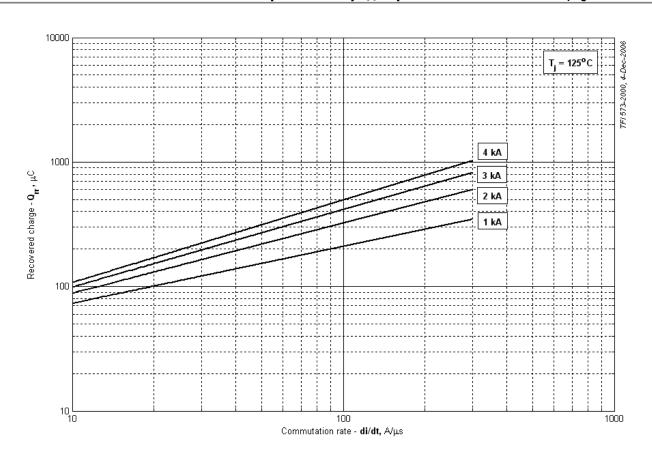


Рис. 4 — Максимальный заряд обратного восстановления, Q_{гг} (по ГОСТ 24461, хорда 25%)

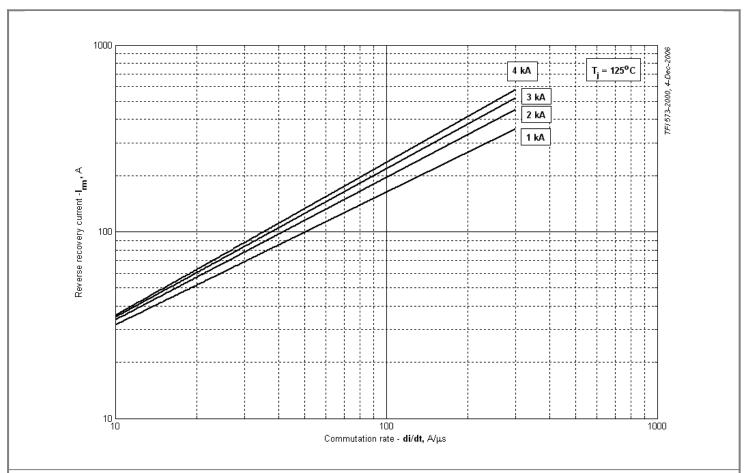


Рис. 5 — Максимальный обратный ток восстановления, \mathbf{I}_{rr}

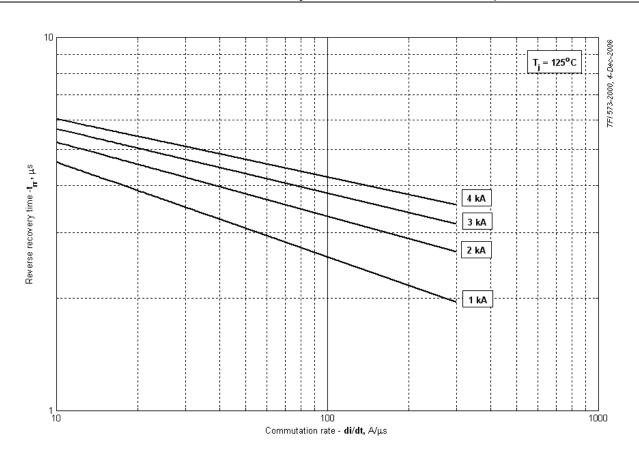


Рис. 6 – Максимальное время обратного восстановления, t_{гг} (по ГОСТ 24461, хорда 25%)

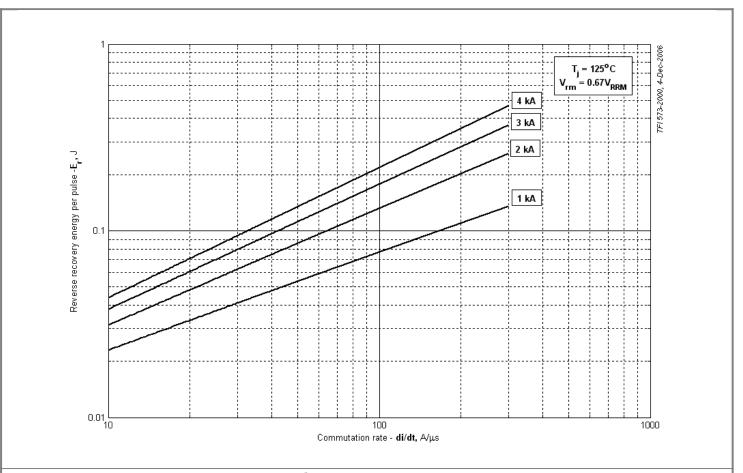


Рис. 7 – Энергия обратного восстановления за импульс

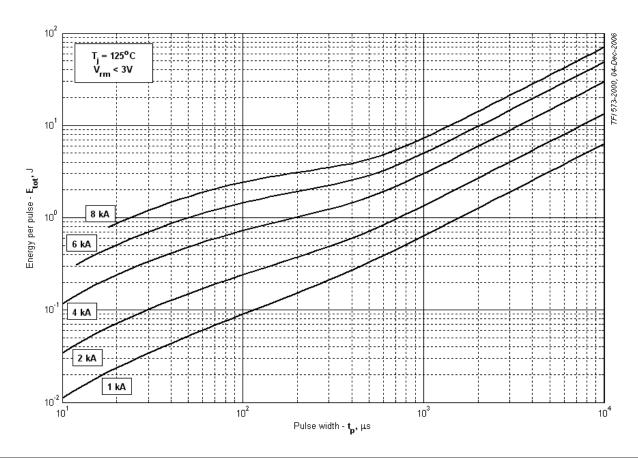


Рис. 8 — Суммарная энергия потерь одного синусоидального импульса тока

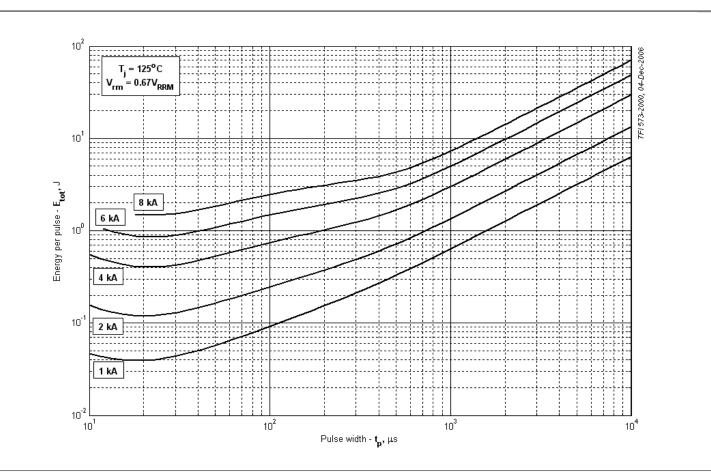


Рис. 9 — Суммарная энергия потерь одного синусоидального импульса тока

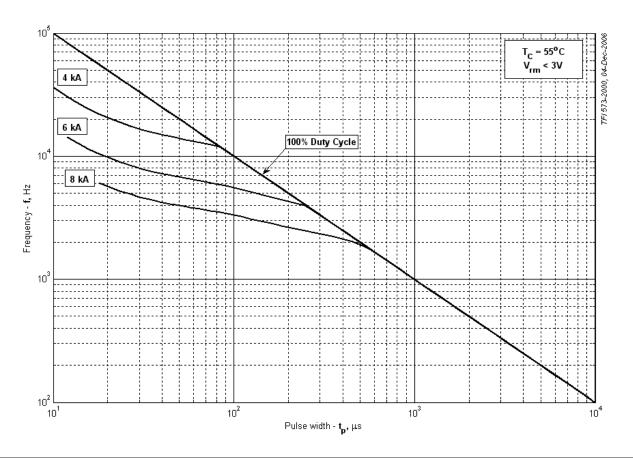


Рис. 10 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов

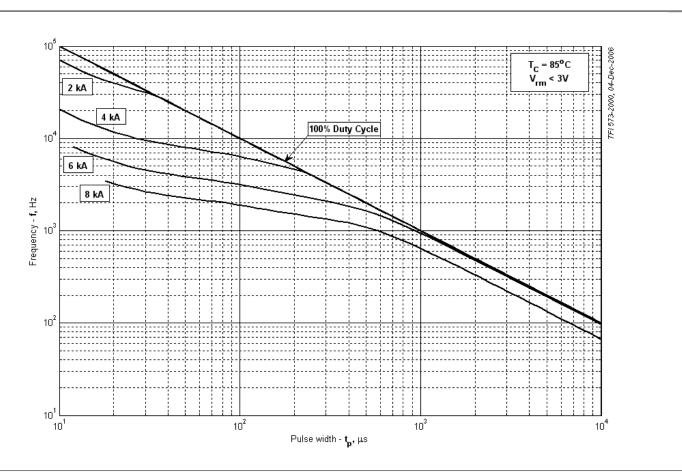


Рис. 11 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов

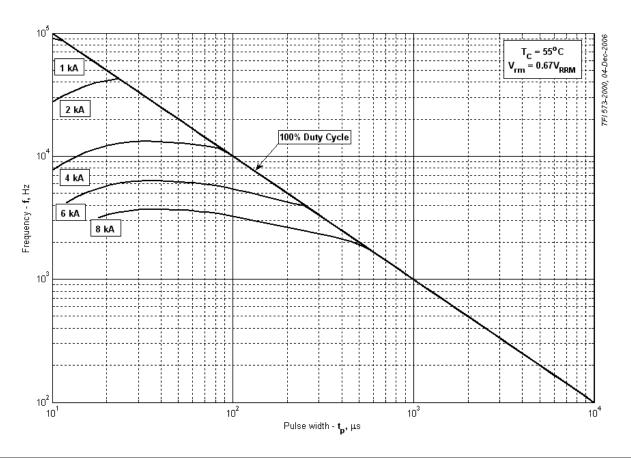


Рис. 12 – Зависимость частоты синусоидальных импульсов тока от длительности импульсов

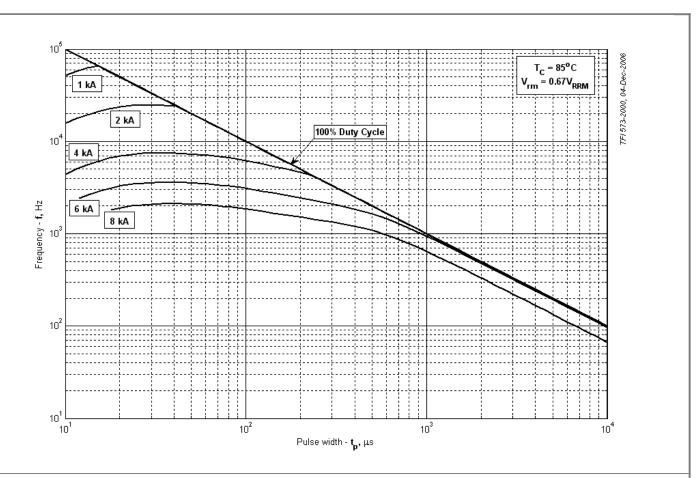


Рис. 13 – Зависимость частоты синусоидальных импульсов тока от длительности импульсов

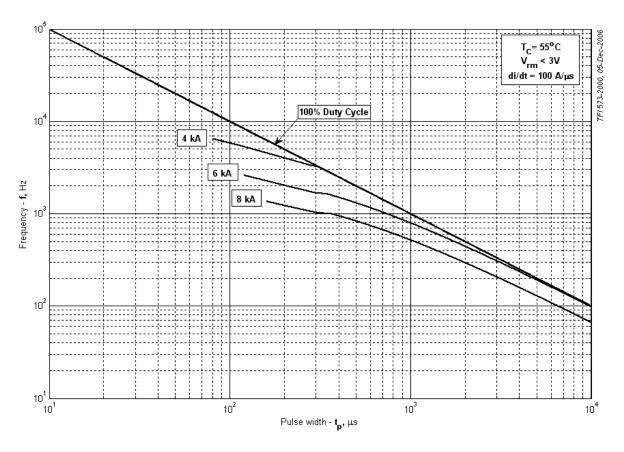


Рис. 14 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

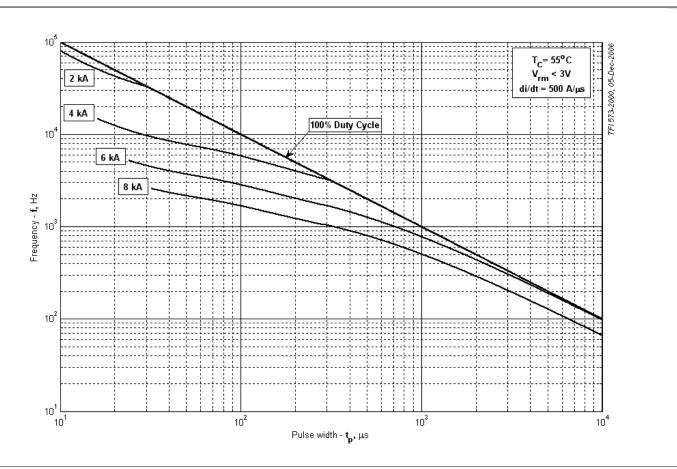


Рис. 15- Зависимость частоты прямоугольных импульсов тока от длительности импульсов

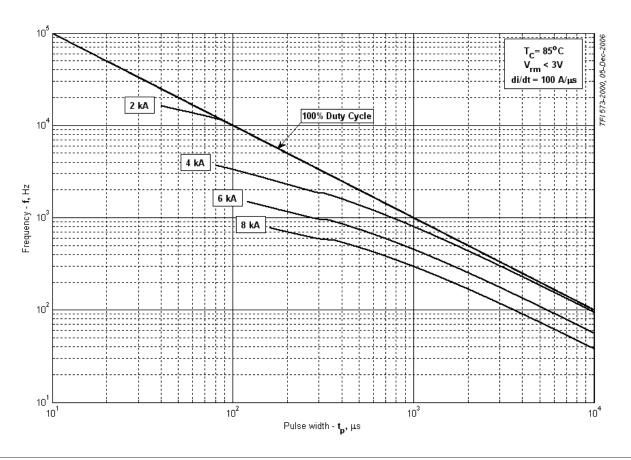


Рис. 16 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

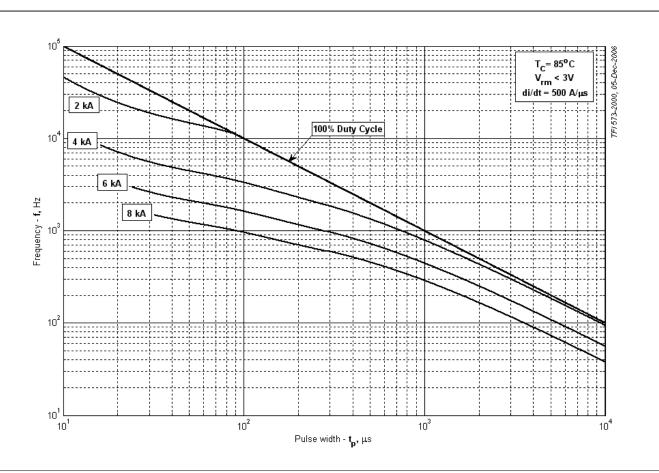


Рис. 17 – Зависимость частоты прямоугольных импульсов тока от длительности импульсов

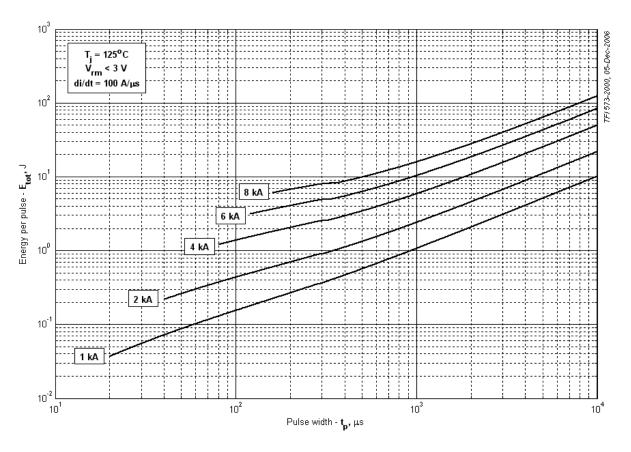


Рис. 18 — Суммарная энергия потерь одного прямоугольного импульса тока

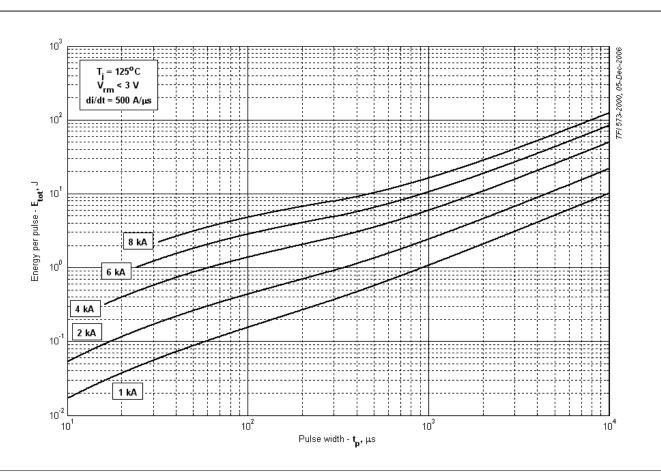


Рис. 19 — Суммарная энергия потерь одного прямоугольного импульса тока

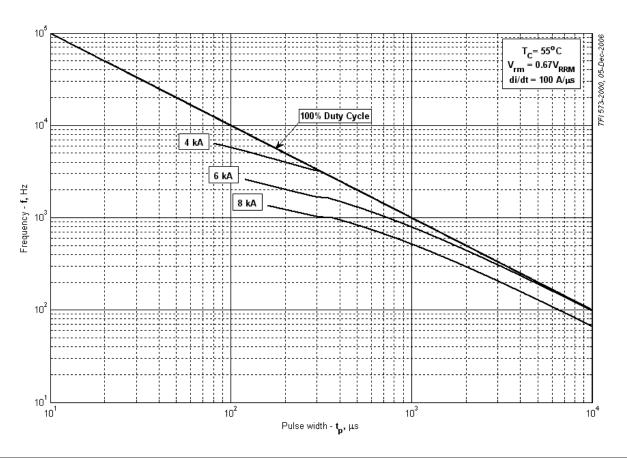


Рис. 20 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

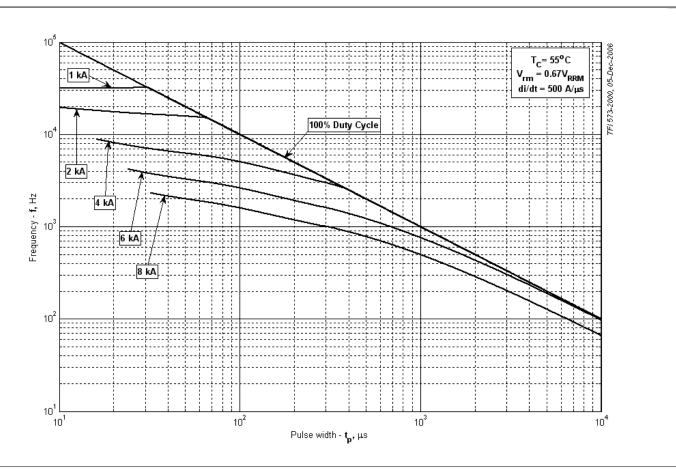


Рис. 21 – Зависимость частоты прямоугольных импульсов тока от длительности импульсов

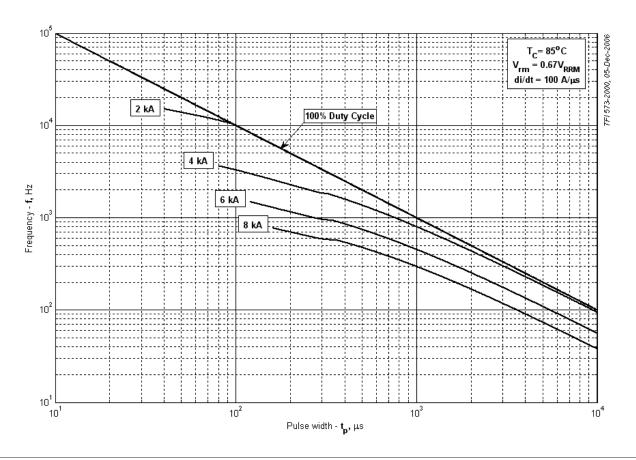


Рис. 22 – Зависимость частоты прямоугольных импульсов тока от длительности импульсов

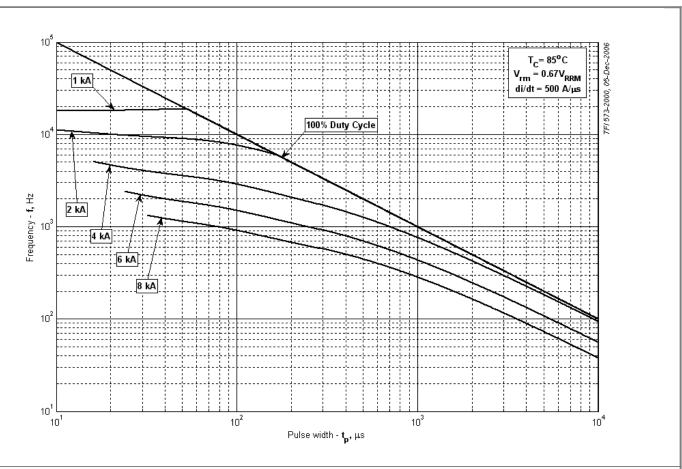


Рис. 23 – Зависимость частоты прямоугольных импульсов тока от длительности импульсов

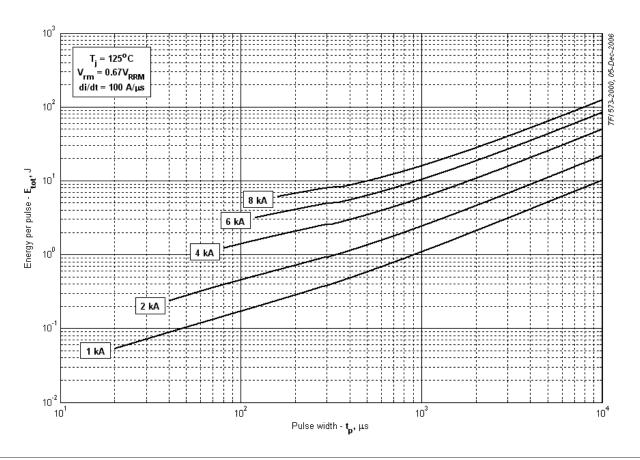
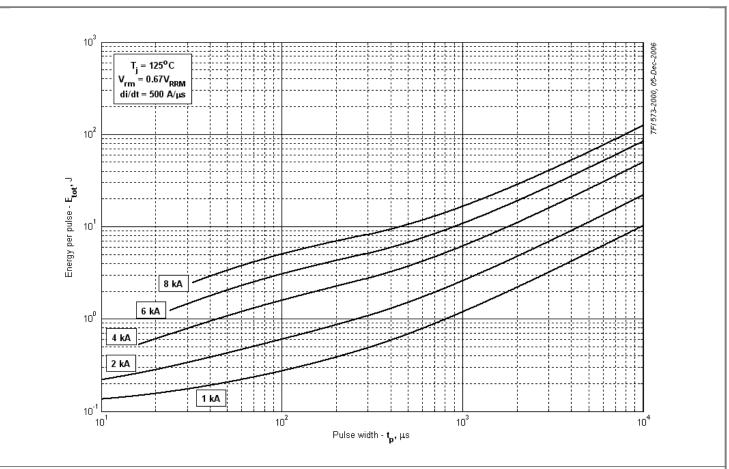



Рис. 24 — Суммарная энергия потерь одного прямоугольного импульса тока

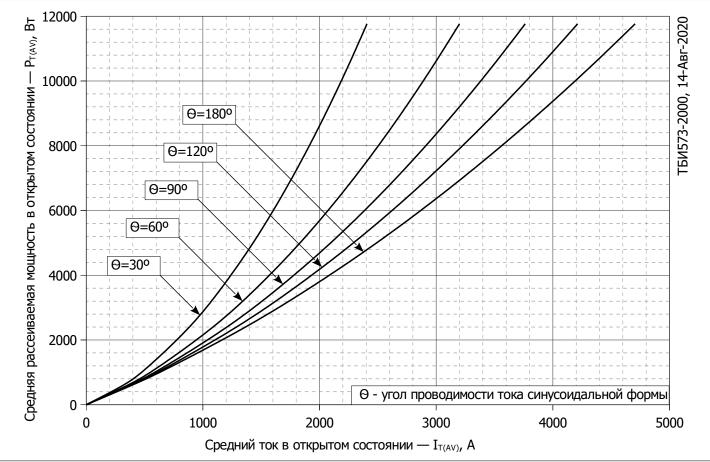


Рис. 26 - Зависимость потерь мощности P_{TAV} от среднего тока в открытом состоянии I_{TAV} синусоидальной формы при различных углах проводимости (f=50 Гц, двухстороннее охлаждение)

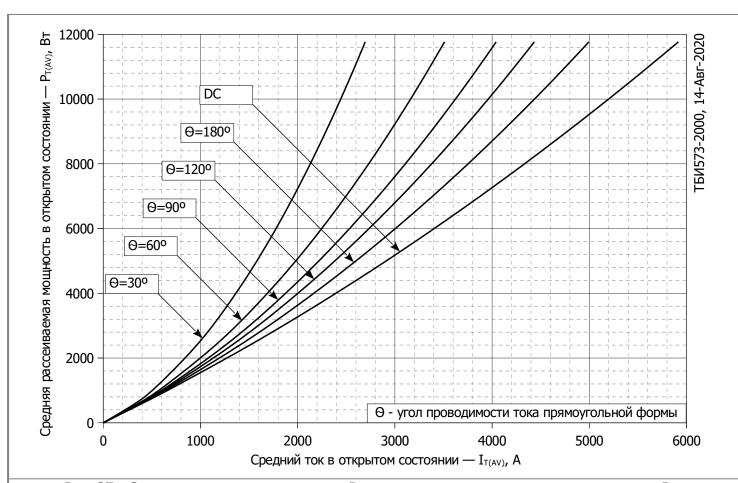


Рис. 27 — Зависимость потерь мощности P_{TAV} от среднего тока в открытом состоянии I_{TAV} прямоугольной формы при различных углах проводимости (f=50 Гц, двухстороннее охлаждение)

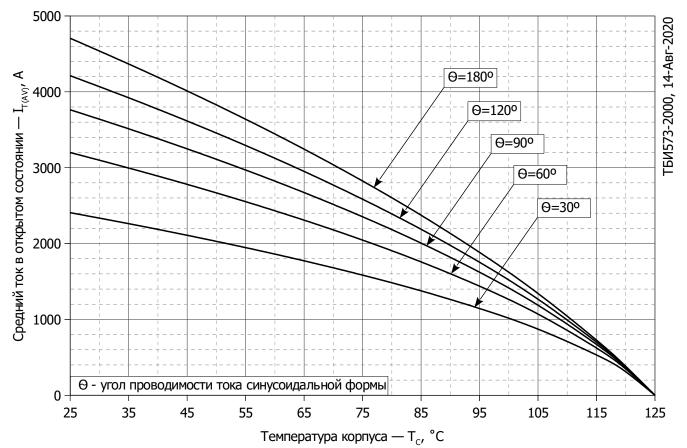


Рис. 28 — Зависимость среднего тока в открытом состоянии I_{TAV} от температуры корпуса T_C для синусоидальной формы тока при различных углах проводимости (f=50 Гц, двухстороннее охлаждение)

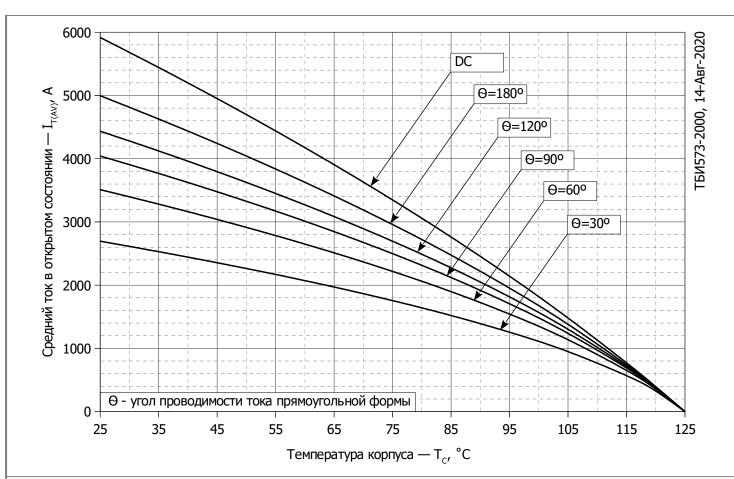


Рис. 29 - Зависимость среднего тока в открытом состоянии I_{TAV} от температуры корпуса T_C для прямоугольной формы тока при различных углах проводимости (f=50 Гц, двухстороннее охлаждение)

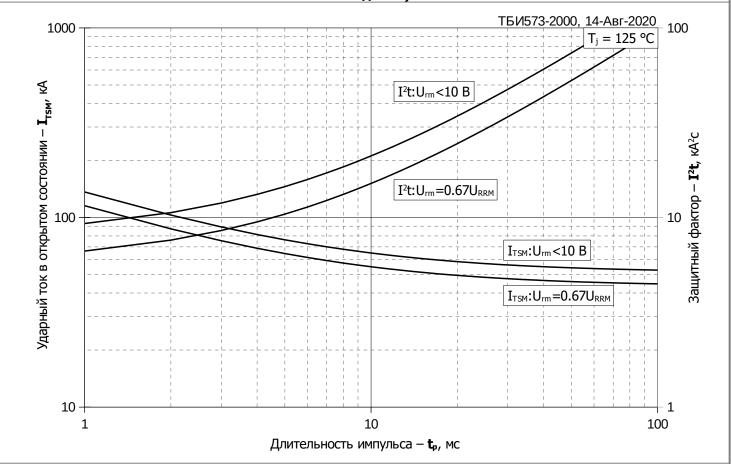
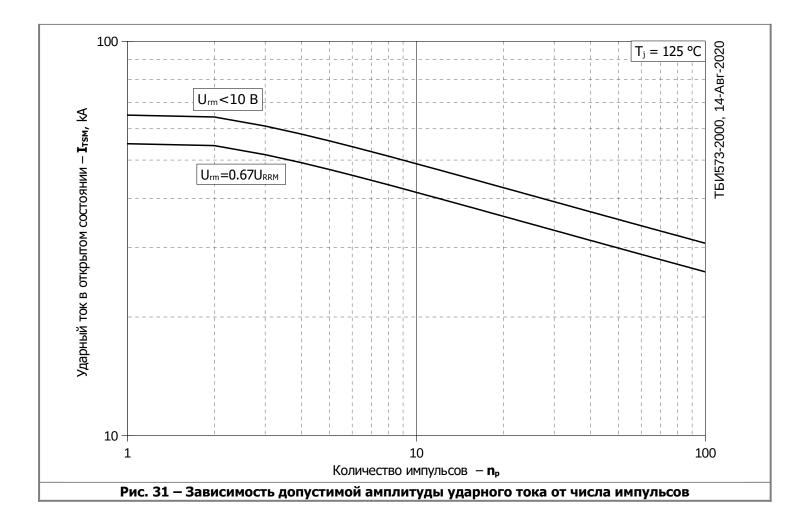



Рис. 30 - Максимальные ударные и I²t характеристики

