

ПРОТОН-ЭЛЕКТРОТЕКС

Низкие динамические потери Малый заряд обратного восстановления Разветвленный управляющий электрод для высоких скоростей нарастания тока

Быстродействующий Импульсный Тиристор Тип ТБИ373-2000-25

Средний прямой ток			I _{TAV}	2000 A		
Повторяющееся импульсн закрытом состоянии	ное напряжение в		U _{DRM}	20002500 B		
Повторяющееся импульс	ное обратное напряже	ние	U _{RRM}			
Время выключения			t _q	40.0, 50.0, 63.0 мкс		
U _{DRM} , U _{RRM} , B	2000		2200	2400	2500	
Класс по напряжению	20	22		24	25	
T _j , °C		-60+125				

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозн	ачение и наименование параметра	Ед. изм.	Значение		Условия измерения
Параметр	ы в проводящем состоянии				
I_{TAV}	Максимально допустимый средний ток в открытом состоянии	A	2000 2970	T_c =85 °C; двухстороннее охлажден T_c =55 °C; двухстороннее охлажден 180 эл. град. синус; 50 Гц	
I _{TRMS}	Действующий ток в открытом состоянии	А	3140	1	двухстороннее охлаждение; ад. синус; 50 Гц
_	V×	45.0 T _j =T _{j max} 52.0 T _j =25 °C		$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p = 10 мс; единичный импульс; U_D = U_R = 0 В; Импульс управления: I_G = I_{FGM} ; U_G = 20 В; t_{GP} = 50 мкс; di_G / dt = 1 А/мкс
I _{TSM}	Ударный ток в открытом состоянии	кА	47.0 54.0	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	t_p =8.3 мс; единичный импульс; U_D = U_R =0 B; Импульс управления: I_G = I_{FGM} ; U_G =20 B; t_{GP} =50 мкс; d_{IG}/dt =1 A/мкс
		A ² C:10 ³	10100 13500	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_{p} = 10 мс; единичный импульс; U_{D} = U_{R} = 0 В; Импульс управления: I_{G} = I_{FGM} ; U_{G} = 20 В; t_{GP} = 50 мкс; di_{G}/dt = 1 А/мкс
I ² t	Защитный показатель	A CIU	9100 12100	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; $t_p = 8.3$ мс; единичный импульс; $U_D = U_R = 0$ В; Импульс управления: $I_G = I_{FGM}$; $U_G = 20$ В; $t_{GP} = 50$ мкс; $d_{IG}/dt = 1$ А/мкс

Блокирук	ощие параметры			
U _{DRM} , U _{RRM}	Повторяющееся импульсное обратное напряжение и повторяющееся импульсное напряжение в закрытом состоянии	В	20002500	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; 50 Гц; управление разомкнуто
U _{DSM} , U _{RSM}	Неповторяющееся импульсное обратное напряжение и неповторяющееся импульсное напряжение в закрытом состоянии	В	21002600	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; единичный импульс; управление разомкнуто
U_D , U_R	Постоянное обратное и постоянное прямое напряжение	В	0.6 [·] U _{DRM} 0.6 [·] U _{RRM}	$T_{j}=T_{j max};$ управление разомкнуто
Параметр	ы управления			
I_{FGM}	Максимальный прямой ток управления	А	10	T T
U_{RGM}	Максимальное обратное напряжение управления	В	5	$-T_j = T_{j \text{ max}}$
P_{G}	Максимальная рассеиваемая мощность по управлению	Вт	8	$T_{j} = T_{j \text{ max}}$ для постоянного тока управления
Параметр	ы переключения			
(di _T /dt) _{crit}	Критическая скорость нарастания тока в открытом состоянии (f=1 Hz)	А/мкс	2500	$T_{j}=T_{jmax};\;U_{D}=0.67\cdot U_{DRM};\;I_{TM}=8000\;A;\;$ Импульс управления: $I_{G}=2\;A;\;U_{G}=20\;B;\;$ $t_{GP}=50\;$ мкс; $di_{G}/dt=2\;$ А/мкс
Тепловые	е параметры			
T _{stg}	Температура хранения	°C	-60+50	
T _j	Температура р-п перехода	°C	-60+125	
Механиче	еские параметры	-		
F	Монтажное усилие	кН	40.050.0	
a	Ускорение	M/C ²	50	В зажатом состоянии

ХАРАКТЕРИСТИКИ

Обозначе	ние и наименование характеристики	Ед. изм.	Значение	Условия измерения
Характери	стики в проводящем состоянии			
U _{TM}	Импульсное напряжение в открытом состоянии, макс	В	2.15	T _j =25 °C; I _{TM} =6280 A
U _{T(TO)}	Пороговое напряжение, макс	В	1.265	т_т .
r _T	Динамическое сопротивление в открытом состоянии, макс	мОм	0.150	$T_j = T_{j \text{ max}};$ 0.5 π $I_{TAV} < I_T < 1.5 \pi I_{TAV}$
I _H	Ток удержания, макс	мА	1000	T _j =25 °C; U _D =12 B; управление разомкнуто
Блокирую	щие характеристики			
I _{DRM} , I _{RRM}	Повторяющийся импульсный обратный ток и повторяющийся импульсный ток в закрытом состоянии, макс	мА	300	$T_j=T_{j max}$; $U_D=U_{DRM}$; $U_R=U_{RRM}$
(du _D /dt) _{crit}	Критическая скорость нарастания напряжения в закрытом состоянии ¹⁾ , мин	В/мкс	200, 320, 500, 1000, 1600, 2000, 2500	$T_{j} = T_{j \text{ max}};$ $U_{D} = 0.67 \cdot U_{DRM};$ управление разомкнуто

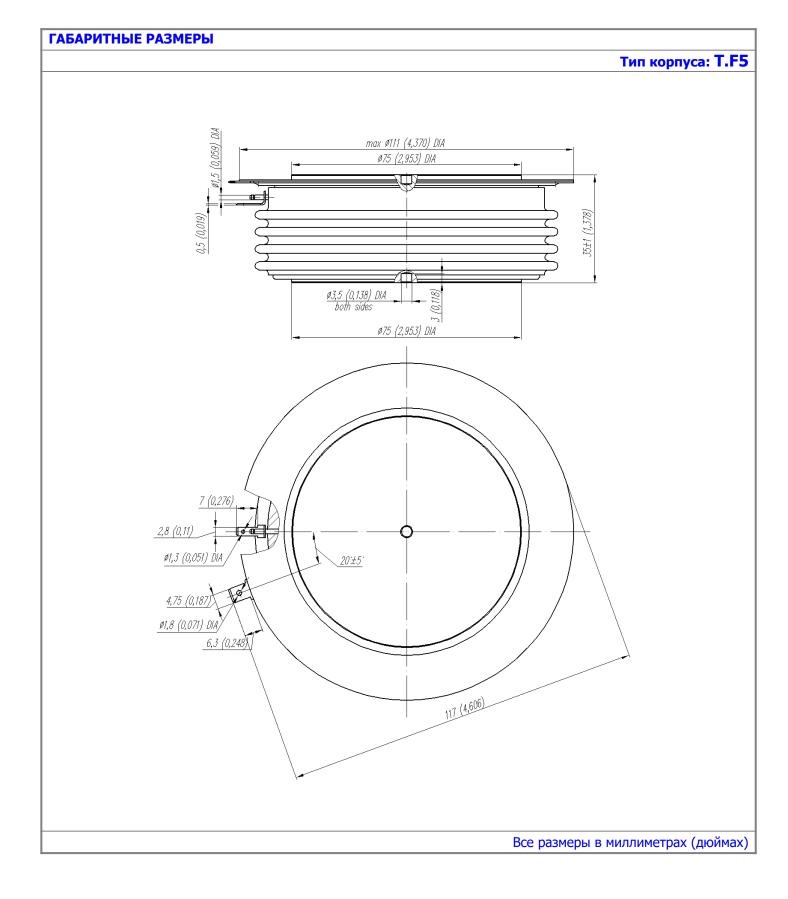
Характе	еристики управления						
U _{GT}	Отпирающее постоянное напряжение управления, макс	В	3.00 3.00 1.50	l li l l max		B; I _D =3 A;	
${ m I}_{ m GT}$	Отпирающий постоянный ток управления, макс	мА	500 300 150	T _ T	постоя управл	нный ток ения	
J_{GD}	Неотпирающее постоянное напряжение управления, мин	В	0.35	$T_j = T_{j \text{ max}};$	-		
${f I}_{\sf GD}$	Неотпирающий постоянный ток управления, мин	мА	70.00	U _D =0.67·U _{DRM} Постоянный		равления	
Динами	ческие характеристики						
-gd	Время задержки, макс	МКС	1.10	T _j =25 °C; U _D =	=1000 I	B; I _{TM} =I _{TAV} ;	
gt	Время включения ²⁾ , макс	МКС	2.50, 3.20, 4.00, 6.30	Импульс упр	di/dt=200 A/мкс; Импульс управления: $I_g=2$ A; $U_g=20$ $t_{GP}=50$ мкс; $di_G/dt=2$ A/мкс		
	3)		40.0, 50.0, 63.0	dv _D /dt=50 B/	$v_D/dt = 50 \text{ B/mKC};$ $T_j = T_{j \text{ max}}; \ I_{TM} = di_R/dt = -10 \text{ A/M};$ $V_D/dt = 200 \text{ B/MKC};$ $U_D = 0.67 U_{DRM}$		
- -q	Время выключения ³⁾ , макс	МКС	50.0, 63.0, 80.0	dv _D /dt=200 E			
Q _{rr}	Заряд обратного восстановления, макс	мкКл	1250	T_T . I -	1000 1		
-rr	Время обратного восстановления, макс	мкс	10	$T_j=T_{j \text{ max}}$; $I_{TM}=$ $di_R/dt=-50 \text{ A/}$ $U_R=100 \text{ B}$		ч,	
[_{rr}	Обратный ток восстановления, макс	A	250	OR-100 B			
Геплові	ые характеристики			1			
R _{thjc}			0.0100		1 -	ухстороннее наждение	
R _{thjc-A}	Тепловое сопротивление p-n переход-корпус, макс	°С/Вт	0.0220	Постоянный ток	I .	паждение со роны анода	
R _{thjc-K}			0.0180		Охлаждение со стороны катода		
R _{thck}	Тепловое сопротивление корпусохладитель, макс	°С/Вт	0.0020	Постоянный	нный ток		
Механи	ческие характеристики						
n	Масса, макс	Г	1600				
D _s	Длина пути тока утечки по поверхности	мм (дюйм)	55.13 (2.170)				
Da	Длина пути тока утечки по воздуху	мм (дюйм)	25.10 (0.988)				

МАРКИРОВКА ТБИ 373 2000 25 A2 C3 C4 УХЛ2 1 2 3 4 5 6 7 8

- 1. Быстродействующий импульсный тиристор
- 2. Конструктивное исполнение
- 3. Средний ток в открытом состоянии, А
- 4. Класс по напряжению
- 5. Критическая скорость нарастания напряжения в закрытом состоянии
- 6. Группа по времени выключения ($du_D/dt=50$ B/мкс)
- 7. Группа по времени включения
- 8. Климатическое исполнение по ГОСТ 15150: УХЛ2, Т2

ПРИМЕЧАНИЕ

¹⁾ Критическая скорость нарастания напряжения в закрытом состоянии


Обозначение группы	P2	K2	E2	A2	T1	P1	M1
(dup/dt) _{crit} , В/мкс	200	320	500	1000	1600	2000	2500

²⁾ Время включения

Обозначение группы	M4	K4	H4	C4
t _{gt} , мкс	2.50	3.20	4.00	6.30

³⁾ Время выключения (du_D/dt=50 B/мкс)

0	бозначение группы	НЗ	E3	C3
	t _q , мкс	40.0	50.0	63.0

Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, АО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.

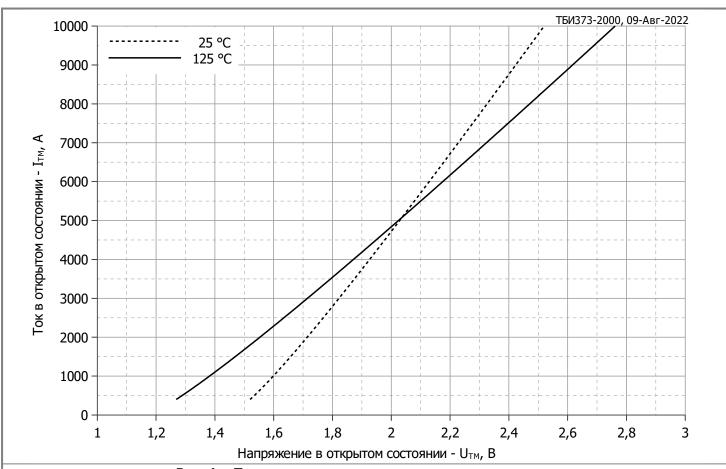


Рис. 1 – Предельная вольт – амперная характеристика

Аналитическая функция вольт — амперной характеристики в открытом состоянии:

$$V_T \!=\! A \!+\! B \!\cdot\! i_T \!+\! C \!\cdot\! \ln \left(i_T \!+\! 1\right) \!+\! D \!\cdot\! \sqrt{i_T}$$

	Коэффициенты для графика						
	$T_j = 25^{\circ}C$ $T_j = T_{j \text{ max}}$						
Α	1.42507441	1.19417755					
В	0.00008531	0.00012521					
С	0.00289066	-0.00939487					
D	0.00215361	0.00402084					

Модель предельной вольт — амперной характеристики (см. Рис. 1)

Рис. 2 — Зависимость переходного теплового сопротивления Z_{thjc} от времени t

Аналитическая зависимость переходного теплового сопротивления переход — корпус:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left(1 - e^{-\frac{t}{\tau_i}} \right)$$

Где i = 1 to n, n — число суммирующихся элементов.

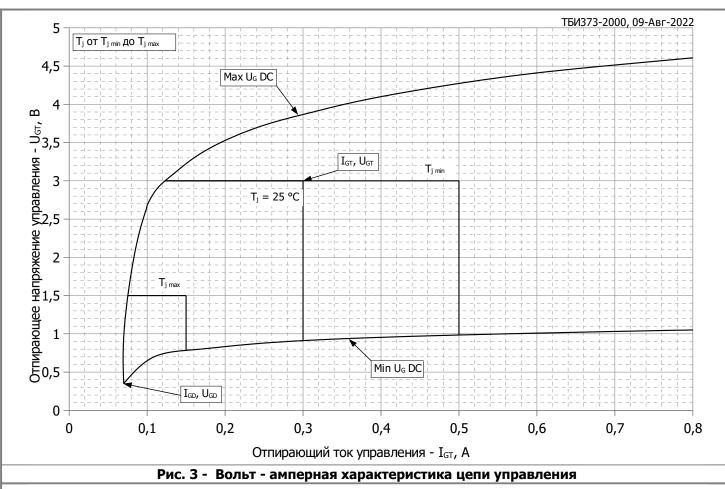
t = продолжительность импульсного нагрева в секундах.

 $\mathbf{Z}_{\mathsf{thjc}} = \mathsf{Тепловое}$ сопротивление за время t.

 ${\bf R}_{{f i}{m r}}\, {f au}_{{f i}} = {f p}$ асчетные коэффициенты, приведенные в таблице.

Постоянный ток, двустороннее охлаждение

i	1	2	3	4	5	6
R _i , K/W	0.002047	0.003474	0.0002566	0.0009157	0.0002537	0.003053
τ _i , S	2.208	0.07263	0.002379	0.1468	0.0006251	1.336


Постоянный ток, охлаждение со стороны анода

i	1	2	3	4	5	6
R _i , K/W	0.01236	0.004677	0.0005872	0.004097	0.0002182	0.000307
τ _i , S	13.330	2.000	0.4303	0.07916	0.003128	0.0007049

Постоянный ток, охлаждение со стороны катода

i	1	2	3	4	5	6
R _i , K/W	0.008162	0.004629	0.000628	0.004107	0.0002172	0.0003086
τ _i , S	13.290	1.911	0.4529	0.0791	0.003157	0.0007072

Модель переходного теплового сопротивления переход - корпус (см. Рис. 2)

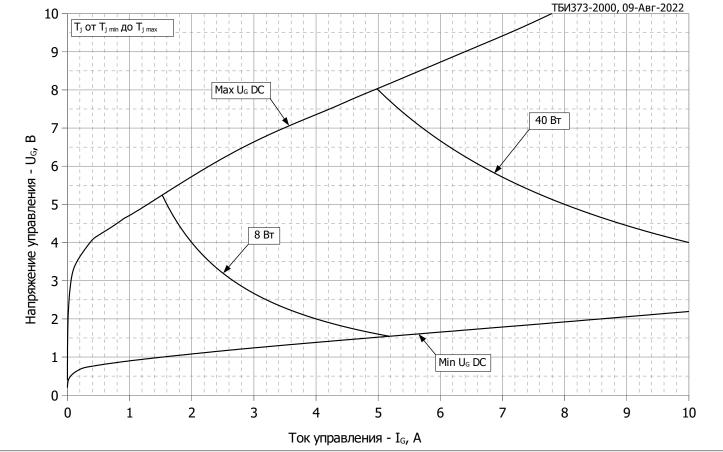


Рис. 4 - Вольт - амперная характеристика цепи управления — Кривые мощности

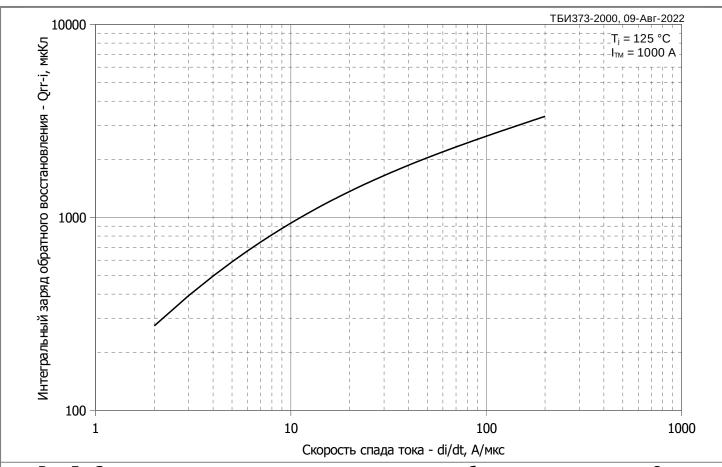


Рис. 5 — Зависимость максимального интегрального заряда обратного восстановления Q_{rr-i} от скорости спада тока di_R/dt в открытом состоянии

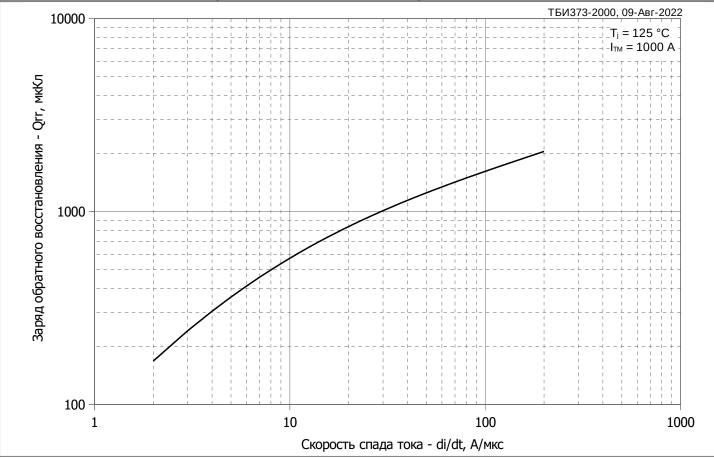


Рис. 6 — Зависимость максимального заряда обратного восстановления Q_{rr} от скорости спада тока di_R/dt (по ГОСТ 24461, хорда 25%) в открытом состоянии

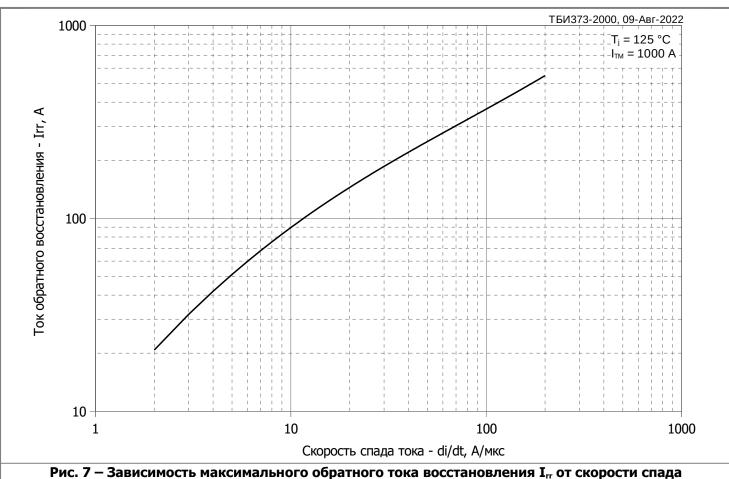


Рис. 7 — Зависимость максимального обратного тока восстановления I_{rr} от скорости спада тока di_R/dt в открытом состоянии

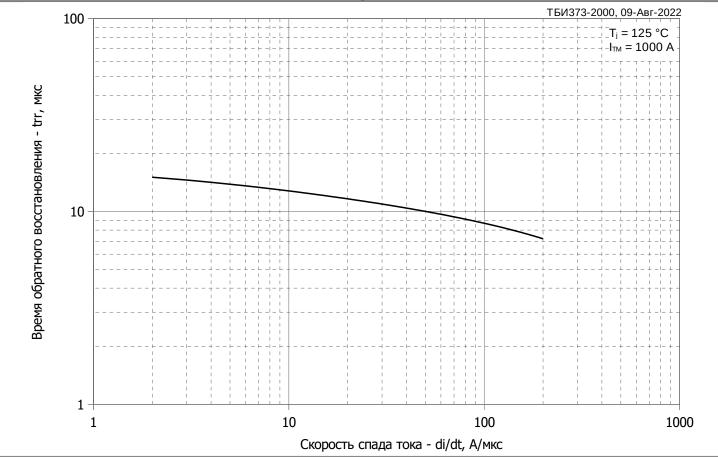


Рис. 8 - Зависимость максимального времени обратного восстановления $t_{\rm rr}$ от скорости спада тока $di_{\rm R}/dt$ (по ГОСТ 24461, хорда 25%) в открытом состоянии

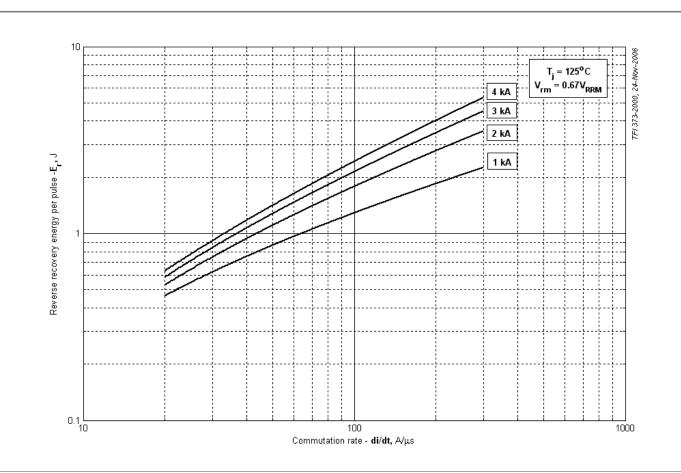


Рис. 9 – Энергия обратного восстановления за импульс

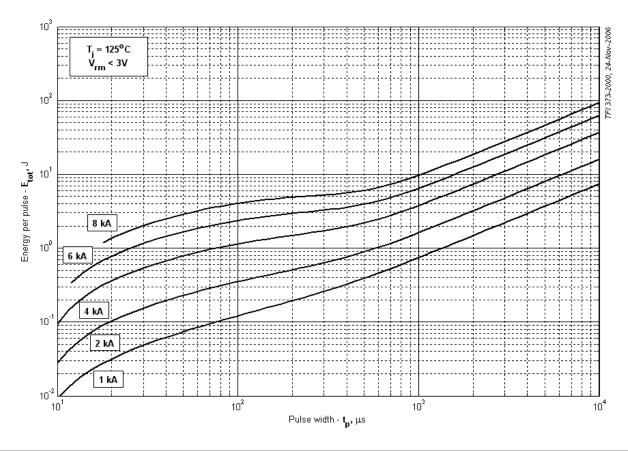


Рис. 10 — Суммарная энергия потерь одного синусоидального импульса тока

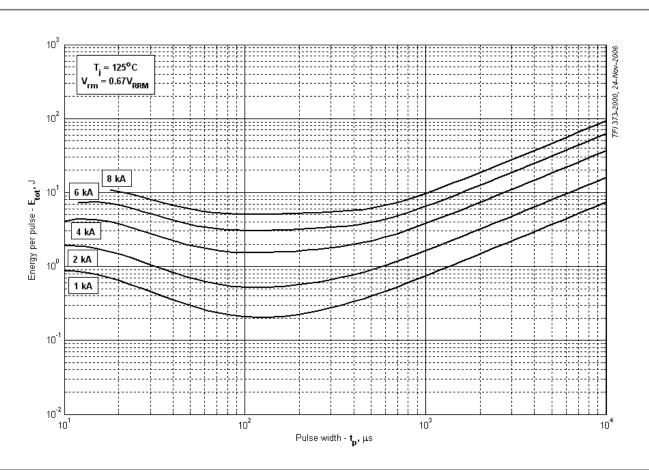


Рис. 11 — Суммарная энергия потерь одного синусоидального импульса тока

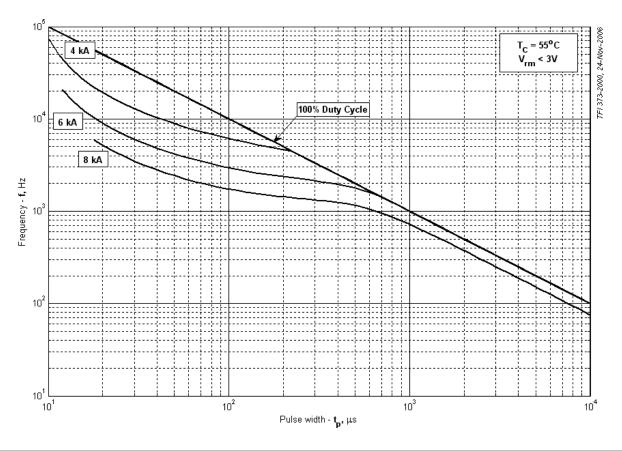


Рис. 12 – Зависимость частоты синусоидальных импульсов тока от длительности импульсов

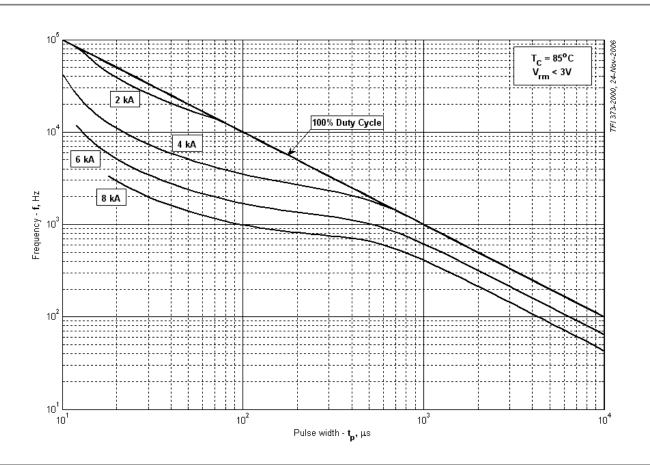


Рис. 13 – Зависимость частоты синусоидальных импульсов тока от длительности импульсов

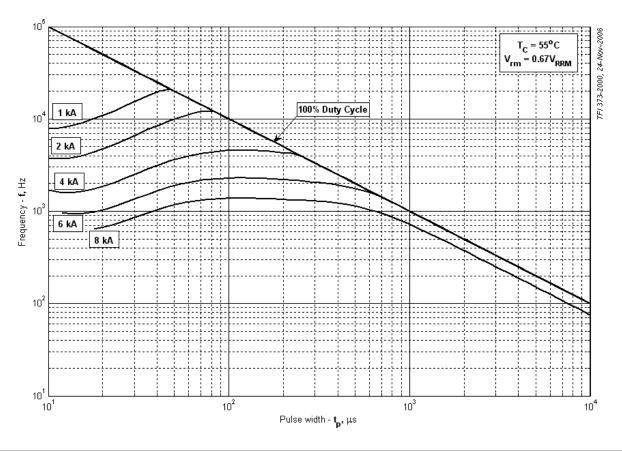


Рис. 14 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов

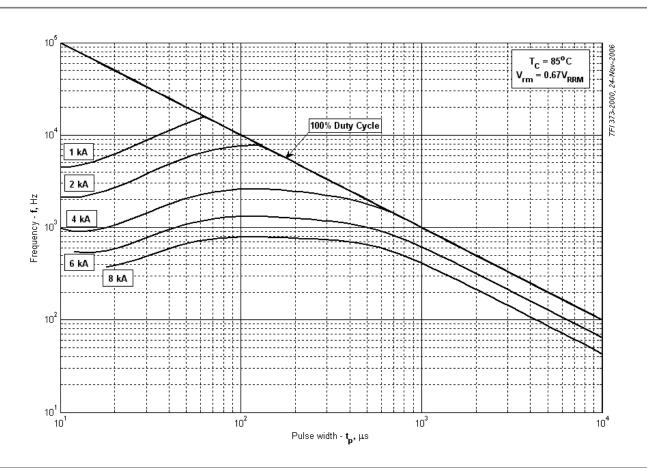


Рис. 15 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов

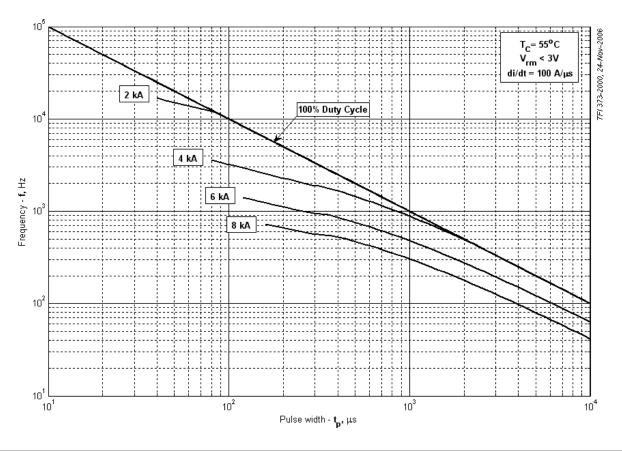


Рис. 16 – Зависимость частоты прямоугольных импульсов тока от длительности импульсов

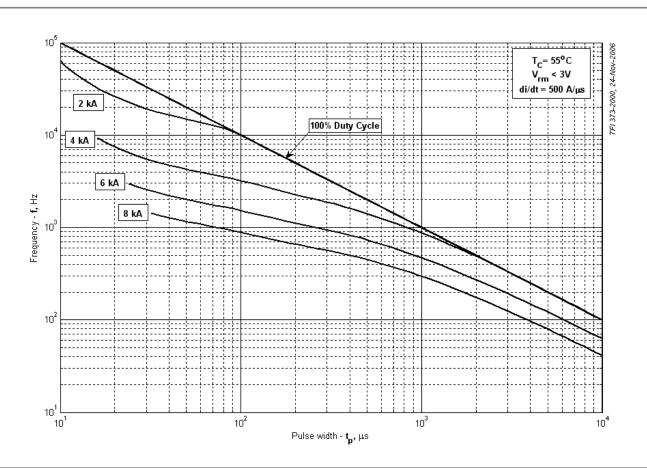


Рис. 17— Зависимость частоты прямоугольных импульсов тока от длительности импульсов

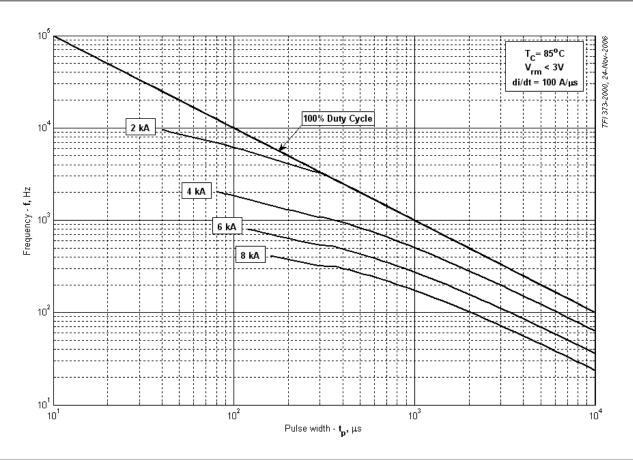


Рис. 18 – Зависимость частоты прямоугольных импульсов тока от длительности импульсов

Рис. 19 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

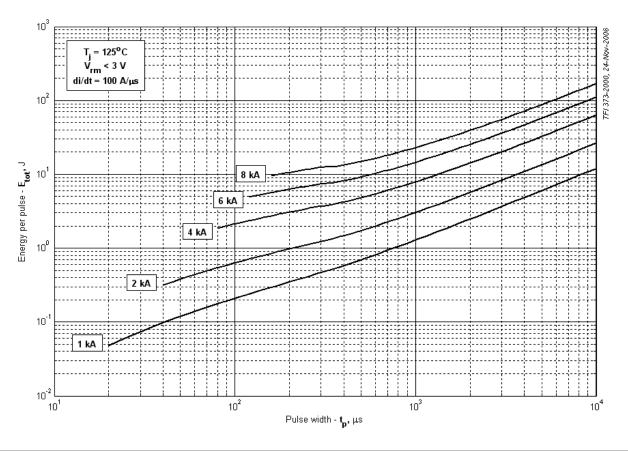


Рис. 20 — Суммарная энергия потерь одного прямоугольного импульса тока

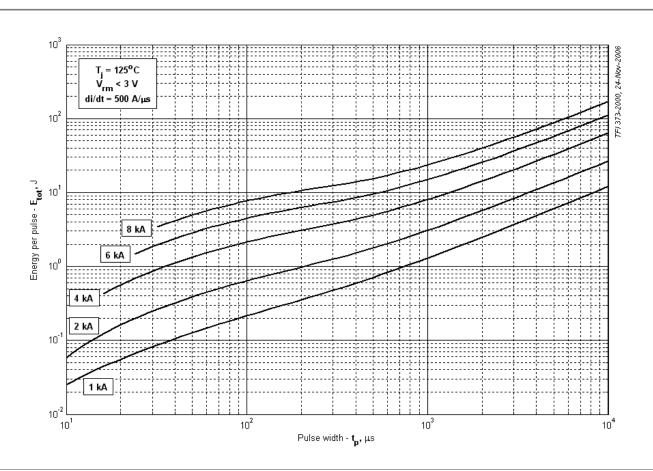


Рис. 21 — Суммарная энергия потерь одного прямоугольного импульса тока

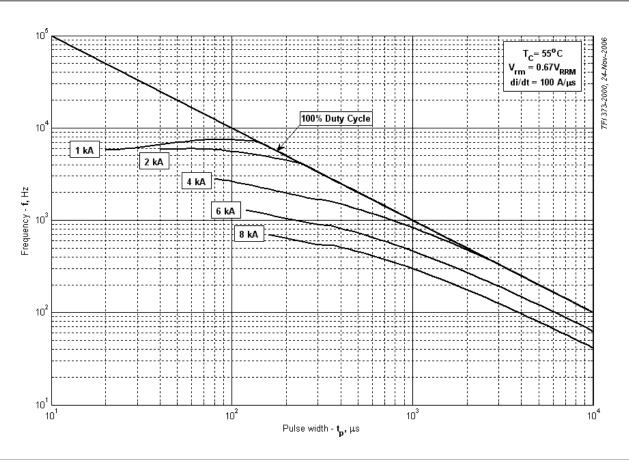


Рис. 22 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

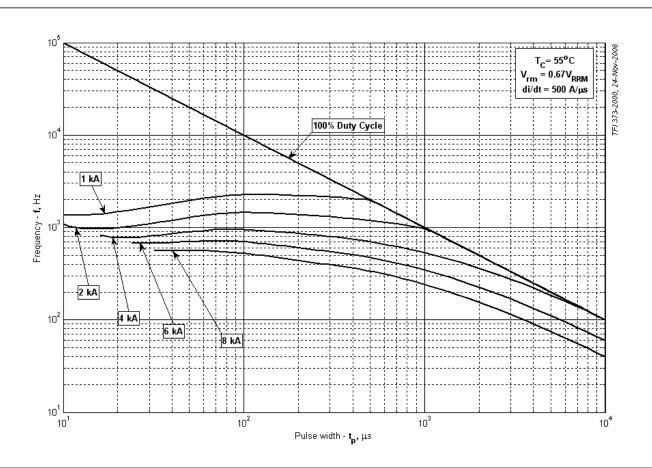


Рис. 23 – Зависимость частоты прямоугольных импульсов тока от длительности импульсов

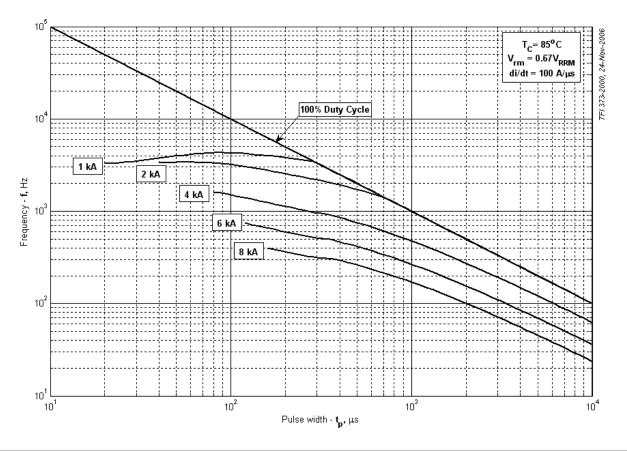


Рис. 24 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

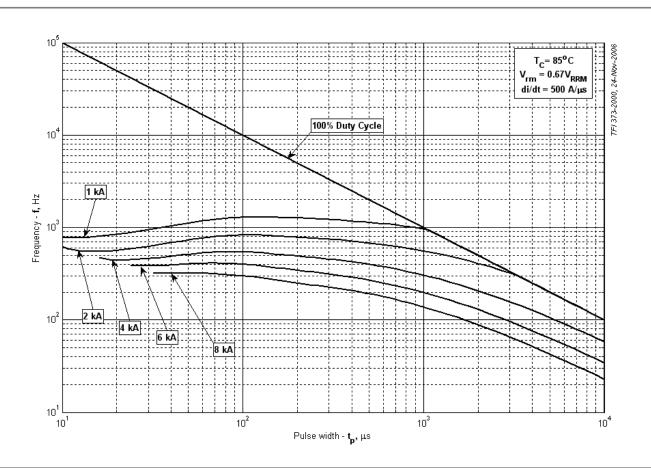


Рис. 25 – Зависимость частоты прямоугольных импульсов тока от длительности импульсов

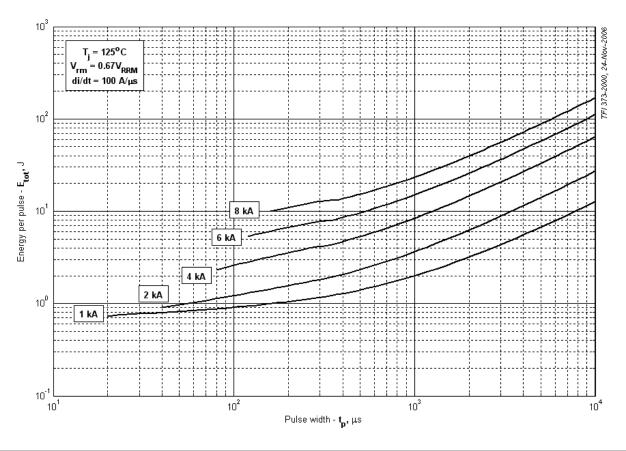


Рис. 26 — Суммарная энергия потерь одного прямоугольного импульса тока

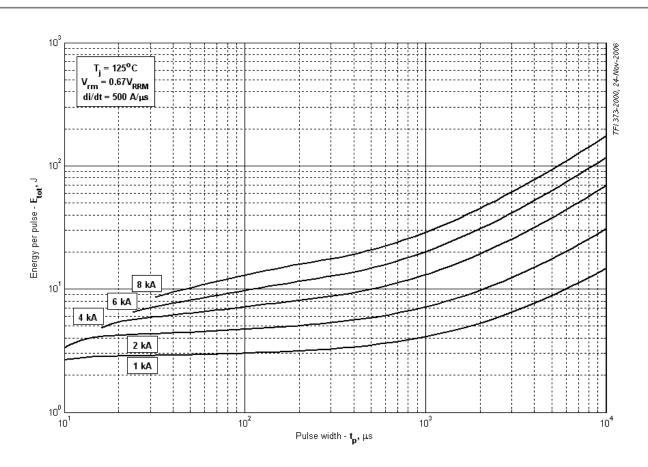


Рис. 27 — Суммарная энергия потерь одного прямоугольного импульса тока

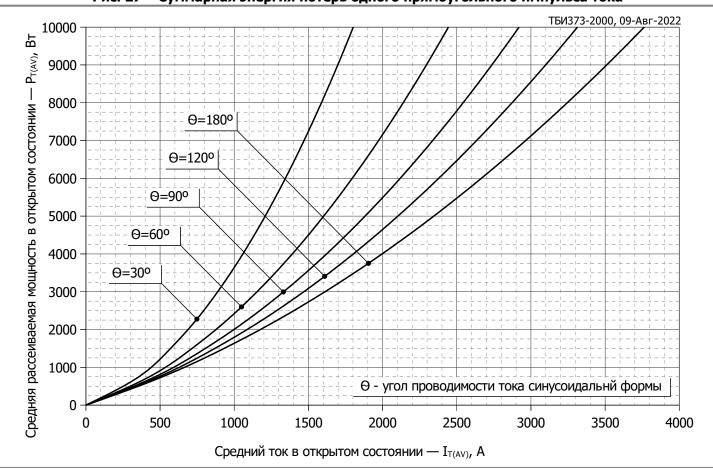


Рис. 28 - Зависимость потерь мощности P_{TAV} от среднего тока в открытом состоянии I_{TAV} синусоидальной формы при различных углах проводимости (f=50 Гц)

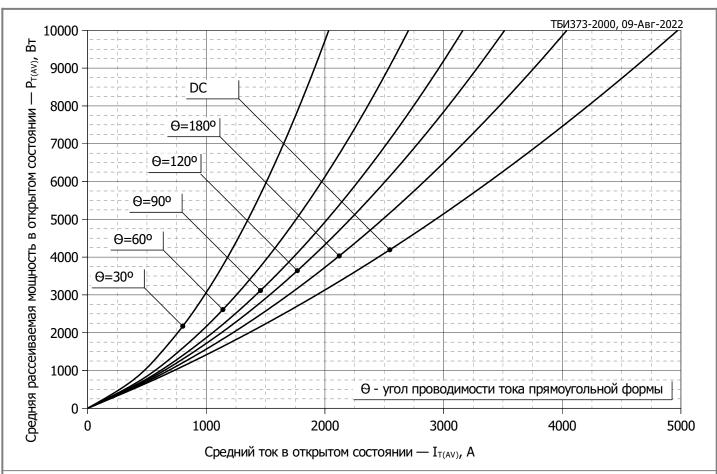


Рис. 29 — Зависимость потерь мощности P_{TAV} от среднего тока в открытом состоянии I_{TAV} прямоугольной формы при различных углах проводимости (f=50 Гц)

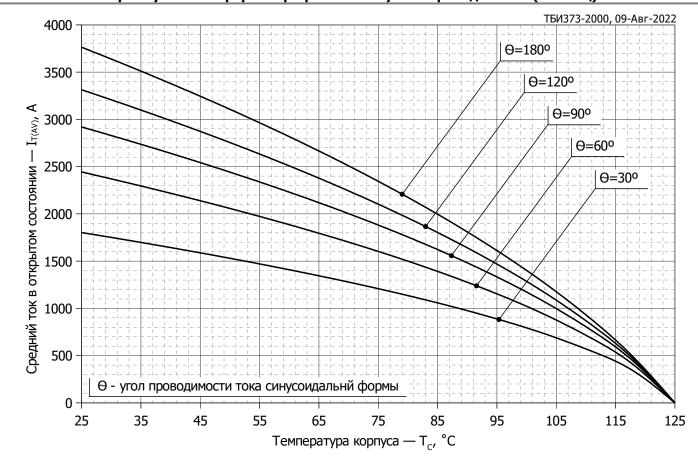


Рис. 30 — Зависимость среднего тока в открытом состоянии I_{TAV} от температуры корпуса T_{c} для синусоидальной формы тока при различных углах проводимости (f=50 Гц)

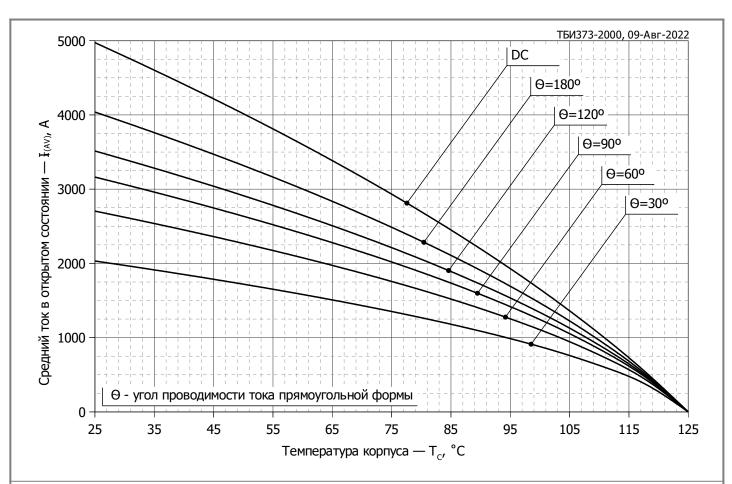


Рис. 31 - Зависимость среднего тока в открытом состоянии I_{TAV} от температуры корпуса T_C для прямоугольной формы тока при различных углах проводимости (f=50 Γ ц)

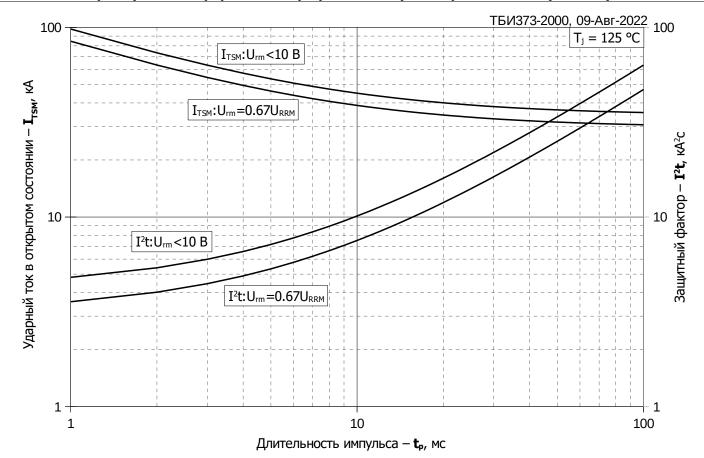


Рис. 32 — Зависимость максимальной амплитуды ударного тока в открытом состоянии I_{TSM} и защитного фактора I^2 t от длительности импульса t_p

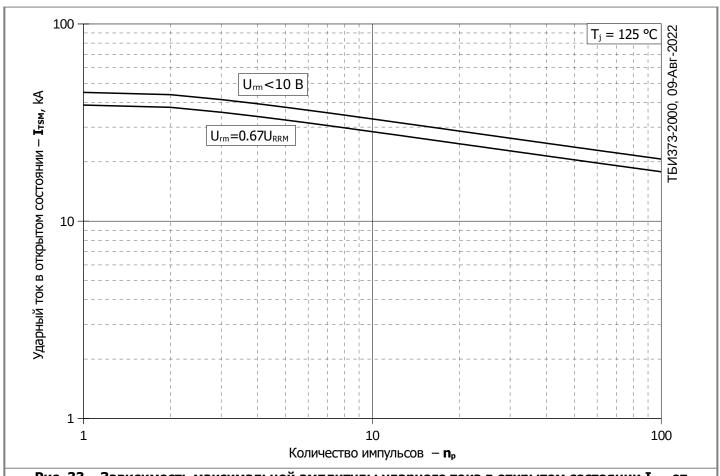


Рис. 33 — Зависимость максимальной амплитуды ударного тока в открытом состоянии $\mathbf{I}_{\mathsf{TSM}}$ от количества импульсов \mathbf{n}_{p}