

ПРОТОН-ЭЛЕКТРОТЕКС

Низкие динамические потери Малый заряд обратного восстановления Разветвленный управляющий электрод для высоких скоростей нарастания тока

Быстродействующий Высокочастотный Тиристор Тип ТБЧ153-1000-14

Максимально допустимый средний ток в открытом состоянии			I _{TAV}		1000 A			
Повторяющееся импульсное напряжение в закрытом состоянии			U _{DRM}		10001400 B			
Повторяющееся импульсн	Повторяющееся импульсное обратное напряжение		U _{RRM}					
Время выключения	Время выключения		t _q		10.0, 12.5, 16.0, 20.0 μs			
U _{DRM} , U _{RRM} , B	1000 110		0	1200		1300	1400	
Класс по напряжению	10	11		12)	13	14	
T _j , °C	−60+125							

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозначение и наименование параметра		Ед. изм.	Значение		Условия измерения		
Параме	Параметры в проводящем состоянии						
${ m I}_{\sf TAV}$	I _{таv} Максимально допустимый средний ток в открытом состоянии		871 1000 1318	T _c =77 °C; T _c =55 °C;	двухстороннее охлаждение; двухстороннее охлаждение; двухстороннее охлаждение; ад. синус; 50 Гц		
I_{TRMS}	Действующий ток в открытом состоянии	А	1570		двухстороннее охлаждение; ад. синус; 50 Гц		
,			23.0 26.0	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; $t_p = 10$ мс; единичный импульс; $U_D = U_R = 0$ В; Импульс управления: $I_G = I_{FGM}$; $U_G = 20$ В; $t_{GP} = 50$ мкс; $d_{GG} = 1$ А/мкс		
${ m I}_{\sf TSM}$	Ударный ток в открытом состоянии	кА	24.0 28.0	$T_j = T_{j \text{ max}}$ $T_j = 25 \text{ °C}$	180 эл. град. синус; t_p = 8.3 мс; единичный импульс; U_D = U_R = 0 B; Импульс управления: I_G = I_{FGM} ; U_G = 20 B; t_{GP} = 50 мкс; d_G / dt = 1 A/мкс		
T2+			2600 3300	$T_j = T_{j \text{ max}}$ $T_j = 25 \text{ °C}$	180 эл. град. синус; $t_p = 10$ мс; единичный импульс; $U_D = U_R = 0$ В; Импульс управления: $I_G = I_{FGM}$; $U_G = 20$ В; $t_{GP} = 50$ мкс; $d_{IG}/dt = 1$ А/мкс		
I²t	Защитный показатель	A ² c·10 ³	2300 3200	$T_j = T_{j \text{ max}}$ $T_j = 25 \text{ °C}$	180 эл. град. синус; t_p = 8.3 мс; единичный импульс; U_D = U_R = 0 B; Импульс управления: I_G = I_{FGM} ; U_G = 20 B; t_{GP} = 50 мкс; di_G / dt = 1 A/мкс		

Блокирук	ощие параметры			
U _{DRM} , U _{RRM}	Повторяющееся импульсное обратное напряжение и повторяющееся импульсное напряжение в закрытом состоянии	В	10001400	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; 50 Гц; управление разомкнуто
U _{DSM} , U _{RSM}	Неповторяющееся импульсное обратное напряжение и неповторяющееся импульсное напряжение в закрытом состоянии	В	11001500	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; единичный импульс; управление разомкнуто
U _D , U _R	Постоянное обратное и постоянное прямое напряжение	В	0.6 [·] U _{DRM} 0.6 [·] U _{RRM}	$T_{j} = T_{j \text{ max}};$ управление разомкнуто
Параметр	ы управления			
I_{FGM}	Максимальный прямой ток управления	А	8	T_T
U _{RGM}	Максимальное обратное напряжение управления	В	5	$T_j = T_{j \text{ max}}$
P_{G}	Максимальная рассеиваемая мощность по управлению	Вт	8	$T_{j} = T_{j \text{ max}}$ для постоянного тока управления
Параметр	ы переключения			
(di _T /dt) _{crit}	Критическая скорость нарастания тока в открытом состоянии (f=1 Hz)	А/мкс	2500	$T_j = T_{j \text{ max}}$; $U_D = 0.67 \cdot U_{DRM}$; $I_{TM} = 2200 \text{ A}$; Импульс управления: $I_G = 2 \text{ A}$; $U_G = 20 \text{ B}$; $t_{GP} = 50 \text{ мкc}$; $d_{IG}/dt = 2 \text{ A/MKC}$
Тепловые	параметры			
T _{stg}	Температура хранения	°C	-60+50	
T _j	Температура р-п перехода	°C	-60+125	
Механиче	ские параметры			
F	Монтажное усилие	кН	24.028.0	
a	Ускорение	M/C ²	50	В зажатом состоянии

ХАРАКТЕРИСТИКИ

Обозначение и наименование характеристики		Ед. изм.	Значение	Условия измерения
Характери	стики в проводящем состоянии			
U _{TM}	Импульсное напряжение в открытом состоянии, макс	В	2.50	T _j =25 °C; I _{TM} =3140 A
$U_{T(TO)}$	Пороговое напряжение, макс	В	1.520	$T_i = T_{i \text{ max}}$;
r _T	Динамическое сопротивление в открытом состоянии, макс	мОм	0.312	$0.5 \pi I_{TAV} < I_{T} < 1.5 \pi I_{TAV}$
I _H	Ток удержания, макс	мА	500	T _j =25 °C; U _D =12 B; управление разомкнуто
Блокирую	щие характеристики			
I_{DRM} , I_{RRM}	Повторяющийся импульсный обратный ток и повторяющийся импульсный ток в закрытом состоянии, макс	мА	150	$T_j=T_{j max}$; $U_D=U_{DRM}$; $U_R=U_{RRM}$
(du _D /dt) _{crit}	Критическая скорость нарастания напряжения в закрытом состоянии ¹⁾ , мин	В/мкс	200, 320, 500, 1000, 1600, 2000, 2500	$T_{j} = T_{j \text{ max}};$ $U_{D} = 0.67 \cdot U_{DRM};$ управление разомкнуто

Характе	ристики управления					
U_GT	Отпирающее постоянное напряжение управления, макс	В	3.00 2.50 1.50	li li may	°С _{max}	
$ m I_{GT}$	Отпирающий постоянный ток управления, макс	мА	500 300 150	T T		
J_{GD}	Неотпирающее постоянное напряжение управления, мин	В	0.40	$T_{j}=T_{j \text{ max}};$ $U_{D}=0.67 \cdot U_{DRM};$		
${f I}_{\sf GD}$	Неотпирающий постоянный ток управления, мин	мА	60.00	Постоянный	-	равления
Динами	ческие характеристики					
-gd	Время задержки включения, макс	мкс	0.90	T _j =25 °C; U _D =	=600 B	; I _{TM} =I _{TAV} ;
t_{gt}	Время включения ²⁾ , макс	МКС	2.00, 2.50, 3.20, 4.00	di/dt=200 A/мкс; Импульс управления: I _G =2 A; U _G =20 t _{GP} =50 мкс; di _G /dt=2 A/мкс		
L	D		10.0, 12.5, 16.0, 20.0			$T_j=T_{j \text{ max}}$; $I_{TM}=I_{TAV}$; $di_R/dt=-10 \text{ A/MKC}$;
t _q	Время выключения ³⁾ , макс	МКС	12.5, 16.0, 20.0, 25.0			U _R =100 B;
Qrr	Заряд обратного восстановления, макс	мкКл	150	$T_j=T_{j\text{max}};\;I_{TM}=I_{TAV};\;$		
trr	Время обратного восстановления, макс	мкс	4.0			
\mathbf{I}_{rr}	Обратный ток восстановления, макс	A	100	OR-100 B		
Гепловь	ые характеристики			1		
R thjc			0.0210		1	/хстороннее аждение
R _{thjc-A}	Тепловое сопротивление p-n переход-корпус, макс	°С/Вт	0.0462	Постоянный ток		паждение со роны анода
$R_{ ext{thjc-K}}$			0.0378		Охлаждение со стороны катода	
R _{thck}	Тепловое сопротивление корпус- охладитель, макс	°С/Вт	0.0040	Постоянный ток		
Механи	ческие характеристики					
m	Масса, макс	Г	530			
D _s	Длина пути тока утечки по поверхности	мм (дюйм)	29.47 (1.160)			
Da	Длина пути тока утечки по воздуху	мм (дюйм)	17.50 (0.689)			

МАРКИРОВКА ТБЧ 153 1000 14 A2 P3 1 2 3 4 5 6

- 1. Быстродействующий высокочастотный тиристор
- 2. Конструктивное исполнение
- 3. Средний ток в открытом состоянии, А
- 4. Класс по напряжению
- 5. Критическая скорость нарастания напряжения в закрытом состоянии
- 6. Группа по времени выключения ($du_D/dt=50\ B/mkc$)
- 7. Группа по времени включения
- 8. Климатическое исполнение по ГОСТ 15150: УХЛ2, Т2

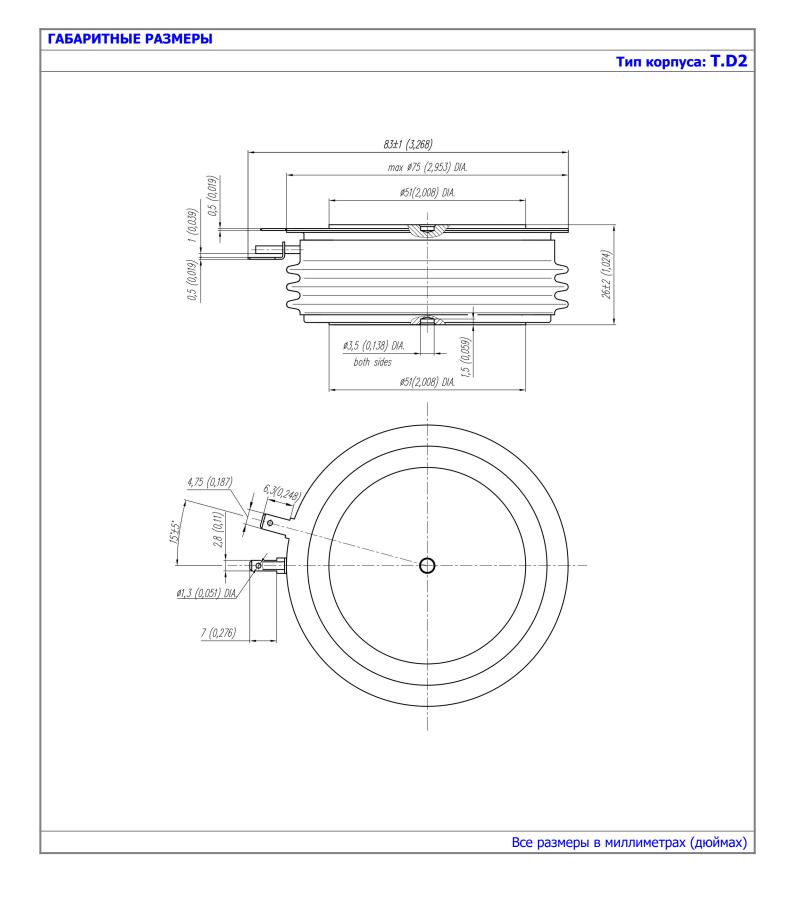
ПРИМЕЧАНИЕ

1) Критическая скорость нарастания напряжения в закрытом состоянии

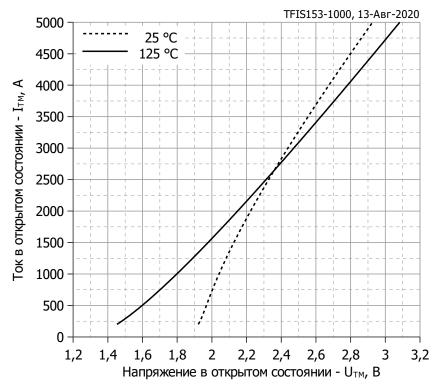
Обозначение группы	P2	K2	E2	A2	T1	P1	M1
(du _D /dt) _{crit} , В/мкс	200	320	500	1000	1600	2000	2500

²⁾ Время включения

Обозначение группы	P4	M4	K4	H4
t _{gt} , мкс	2.00	2.50	3.20	4.00


 $^{3)}$ Время выключения (du_D/dt=50 B/мкс)

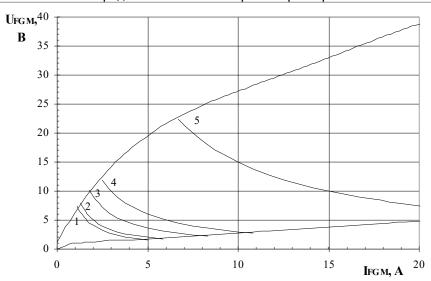
Обозначение группы	A4	Х3	Т3	Р3
t _q , мкс	10.0	12.5	16.0	20.0


Н4 УХЛ2

8

7

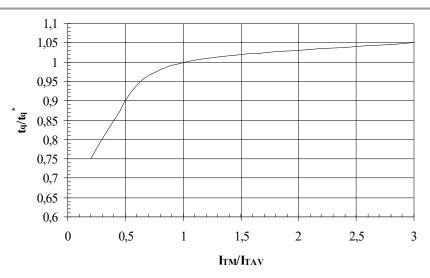
Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, АО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.



Аналитическая функция предельной вольт — амперной характеристики:

$$V_T = A + B \cdot i_T + C \cdot \ln(i_T + 1) + D \cdot \sqrt{i_T}$$

	Коэффициенты для графика					
	$T_j = 25^{\circ}C$ $T_j = T_{jn}$					
Α	1.48084082	1.25437399				
В	0.00039604	0.00023892				
С	0.13009641	0.00659558				
D	-0.02322996	0.00817778				


Рис.1 - Предельная вольт-амперная характеристика.

Максимальные потери мощности цепи управления

	Коэф.	Длина	Энергия
Позиция	времени	импульса	импульса цепи
	вклвыкл.	управл., мс	управл., Вт
1	1	DC	8
2	2	10	10
3	20	1	18
4	40	0.5	30
5	200	0.1	150

Рис.2 — Вольт-амперная характеристика цепи управления

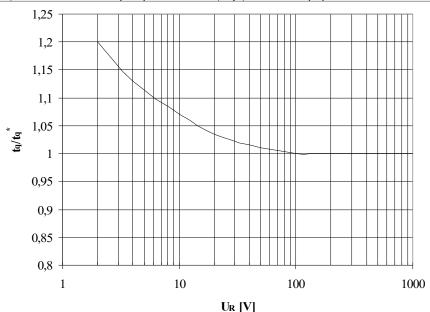


Рис. 3 — Зависимость времени выключения t_q от амплитуды тока в открытом состоянии I_{TM} Условия: $T_j = T_{j \text{ max}}$; $di_R/dt = 10 \text{ A/mkc}$; $U_R = 100 \text{ B}$; $du_D/dt = 50 \text{ B/mkc}$; $U_D = 0.67 \cdot U_{DRM}$ Типичное изменение t_q относительно нормированного t_q^* (t_q^* – см. информационный лист, $du_D/dt = 50 \text{ B/mkc}$)

1,5
1,4
1,3
1,2
1,1
1
0,9
0,8
0 50 100 150 200
(di/dt)r [A/μs]

Рис. 4 — Зависимость времени выключения t_q от скорости спада анодного тока di_R/dt

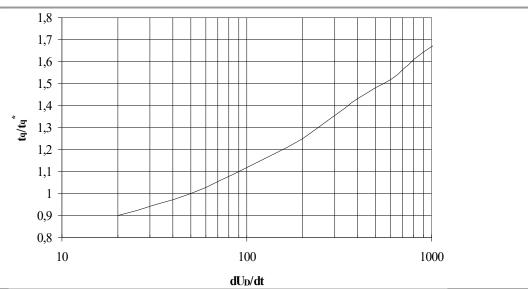
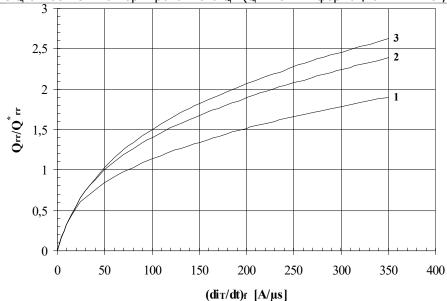

Условия: $T_j = T_{j \text{ max}}$; $I_{TM} = I_{TAV}$; $U_R = 100 \text{ B}$; $du_D/dt = 50 \text{ B/mkc}$; $U_D = 0.67 \cdot U_{DRM}$ Типичное изменение t_q относительно нормированного t_q^* (t_q^* – см. информационный лист, $du_D/dt = 50 \text{ B/mkc}$)

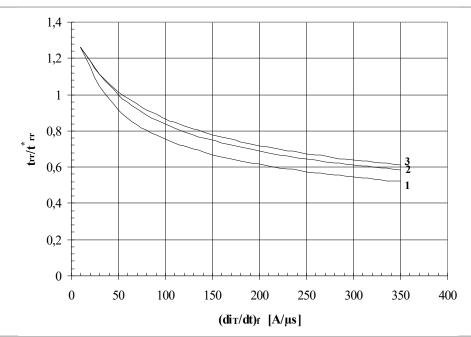
Рис. 5 — Зависимость времени выключения t_q от обратного напряжения U_R


Условия: $T_j = T_{j \text{ max}}$; $I_{TM} = I_{TAV}$; $di_R/dt = 10 \text{ A/MKC}$; $du_D/dt = 50 \text{ B/MKC}$; $U_D = 0.67 \cdot U_{DRM}$

Типичное изменение t_q относительно нормированного t_q^* (t_q^* – см. информационный лист, du_D/dt =50 B/мкс)

Рис. 6 — Зависимость времени выключения $t_{\scriptscriptstyle q}$ от скорости нарастания напряжения $du_{\scriptscriptstyle D}/dt$

Условия: $T_j = T_{j \text{ max}}$; $I_{TM} = I_{TAV}$; $di_R/dt = 10 \text{ A/мкс; } U_R = 100 \text{ B; } U_D = 0.67 \cdot U_{DRM}$ Типичное изменение t_q относительно нормированного t_q * $(t_q$ * – см. информационный лист, $du_D/dt = 50 \text{ B/мкc})$


Рис. 7 — Зависимость заряда обратного восстановления Q_{rr} , от скорости спада анодного тока di_R/dt

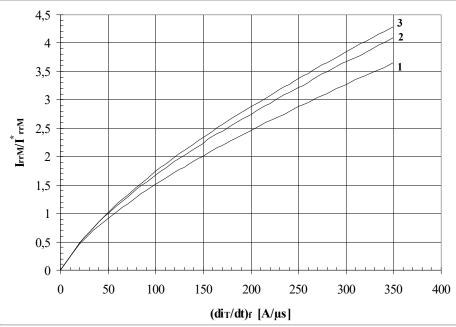
 $1-I_{\text{TM}}=0.5 \cdot I_{\text{TAV}}$

 $\begin{array}{l} 2-I_{\text{TM}}=I_{\text{TAV}},\\ 3-I_{\text{TM}}=1.5 \cdot I_{\text{TAV}} \end{array}$

Условия: $T_j = T_{j \text{ max}}$; $U_R = 100 \text{ B}$

Типичное изменение Q_{rr} относительно нормированного Q_{rr}^* (Q_{rr}^* – см. информационный лист)

Рис. 8 — Зависимость времени обратного восстановления t_{rr} от скорости спада анодного тока di_R/dt


 $1-I_{\text{TM}}=0.5^{\cdot}I_{\text{TAV}}$

 $2 - I_{TM} = I_{TAV}$

 $3-I_{\text{TM}}=1.5^{\cdot}I_{\text{TAV}}$

Условия: $T_j = T_{j \text{ max}}$; $U_R = 100 \text{ B}$

Типичное изменение t_{rr} относительно нормированного t_{rr}^* (t_{rr}^* – см. информационный лист)

Рис. 9 — Максимальная зависимость обратного тока восстановления I_{rr} от скорости спада анодного тока di_R/dt

 $1-I_{\text{TM}}=0.5^{\cdot}I_{\text{TAV}}$

 $\begin{array}{l} 2-I_{\text{TM}}=I_{\text{TAV}}\text{,}\\ 3-I_{\text{TM}}=1.5 \cdot I_{\text{TAV}} \end{array}$

Условия: $T_i = T_{i \text{ max}}$; $U_R = 100 \text{ B}$

Типичное изменение I_{rr} относительно нормированного I_{rr}^* (I_{rr}^* – см. информационный лист)

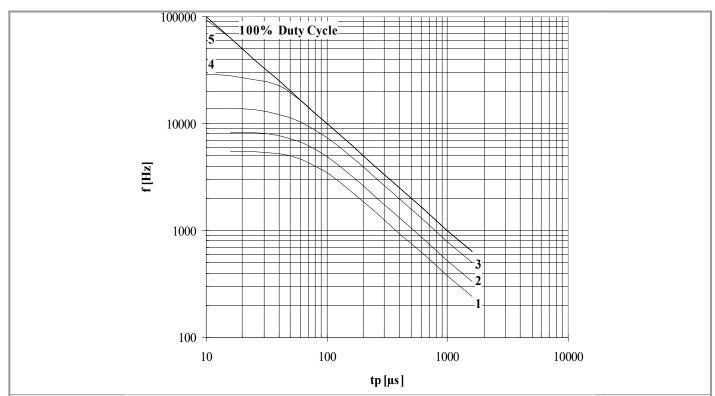


Рис. 10 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов тока

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

Условия: $U_R \le 3$ B; $T_C = 55$ °C

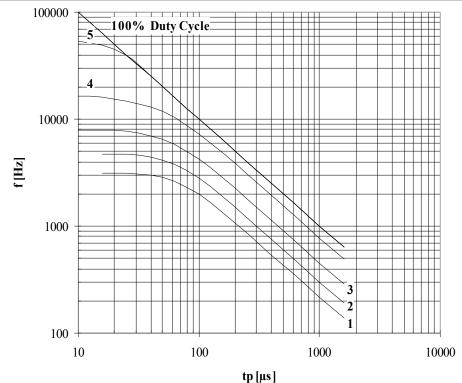


Рис. 11 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов тока

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3-I_{\text{TM}}=3000~\text{A}$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

Условия: U_R≤3 B; T_C=78 °C

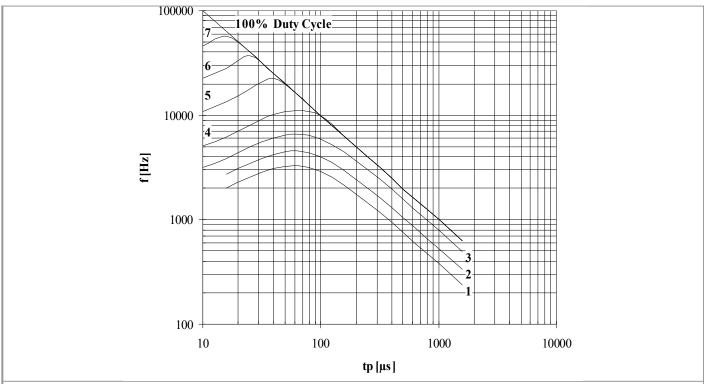
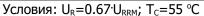


Рис. 12 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов тока

 $1-I_{\text{TM}}=5000~\text{A}$


 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $\begin{array}{l} 5 - I_{\text{TM}} = 1000 \; \text{A} \\ 6 - I_{\text{TM}} = 500 \; \text{A} \end{array}$

 $7 - I_{TM} = 250 \text{ A}$

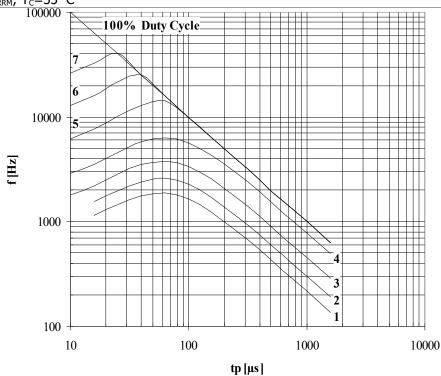


Рис. 13 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов тока

 $1 - I_{TM} = 5000 A$

 $2 - I_{\text{TM}} = 4000 \text{ A}$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5-I_{\text{\tiny TM}}=1000~\text{A}$

 $6-I_{\text{TM}}=500\;\text{A}$

 $7-I_{\text{TM}}=250~\text{A}$

Условия: $U_R = 0.67 \cdot U_{RRM}$; $T_C = 78 \, ^{\circ}C$

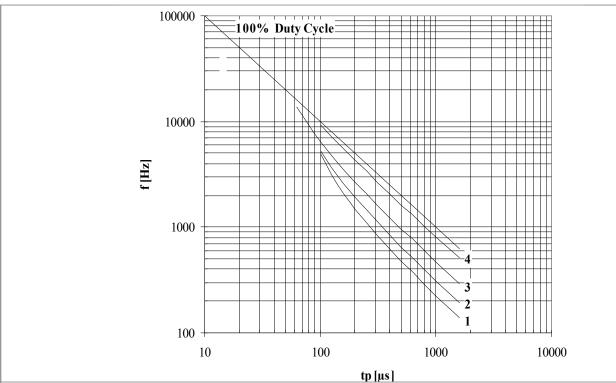


Рис. 14 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1-I_{\text{TM}}=5000~\text{A}$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

Условия: $U_R \le 3$ B; $T_C = 55$ °C; $di_F/dt = di_R/dt = 100$ A/мкс

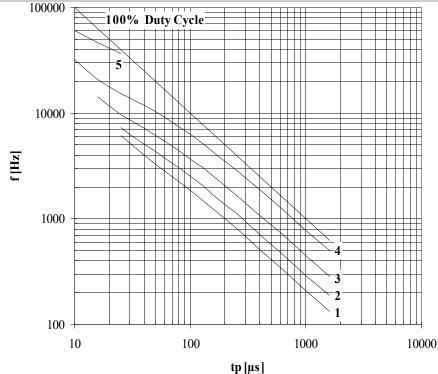


Рис. 15 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

Условия: $U_R \le 3$ B; $T_C = 55$ °C; $di_F/dt = di_R/dt = 500$ A/мкс

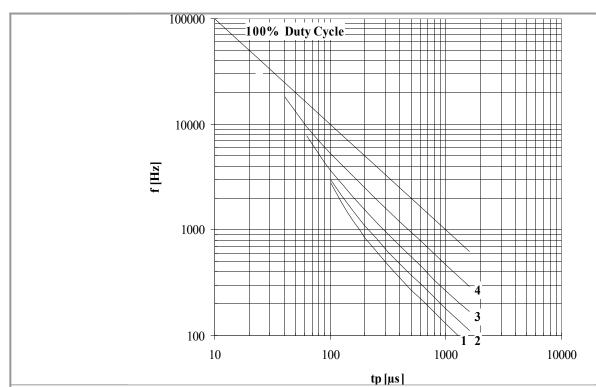


Рис. 16 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $2 - I_{TM} = 4000 A$

 $3-I_{\text{TM}}=3000~\text{A}$

 $4 - I_{TM} = 2000 A$

Условия: U_R≤3 B; T_C=78 °C; di_F/dt=di_R/dt=100 A/мкс

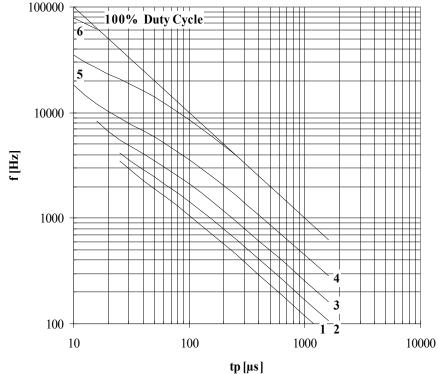


Рис. 17 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 \text{ A}$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5-I_{\text{TM}}=1000\;\text{A}$

 $6 - I_{TM} = 500 A$

Условия: $U_R \le 3$ B; $T_C = 78$ °C; $di_F/dt = di_R/dt = 500$ A/мкс

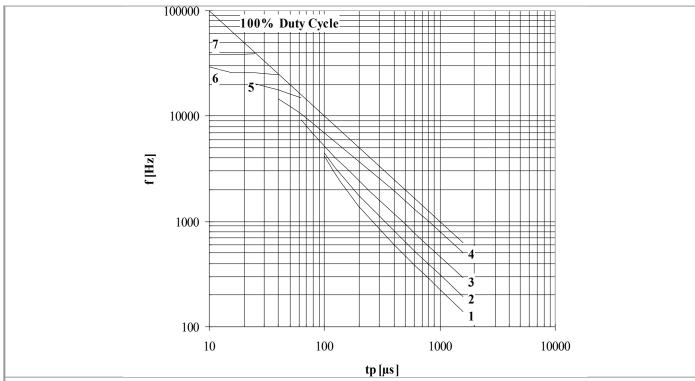
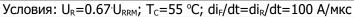


Рис. 18 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1-I_{\text{\tiny TM}}=5000~\text{A}$

 $2 - I_{\text{TM}} = 4000 \text{ A}$


 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5-I_{\text{\tiny TM}}=1000~\text{A}$

 $6-I_{\text{TM}}=500\;\text{A}$

 $7 - I_{TM} = 250 A$

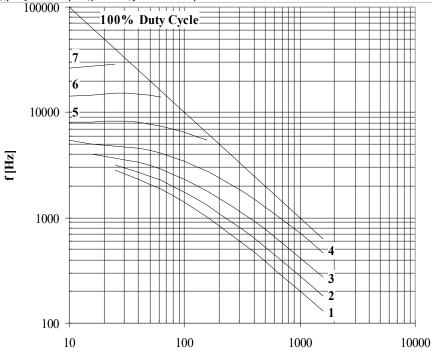


Рис. 19 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

to [us]

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6-I_{\text{TM}}=500\;\text{A}$

 $7 - I_{TM} = 250 \text{ A}$

Условия: $U_R = 0.67 \cdot U_{RRM}$; $T_C = 55$ °C; $di_F/dt = di_R/dt = 500$ A/мкс

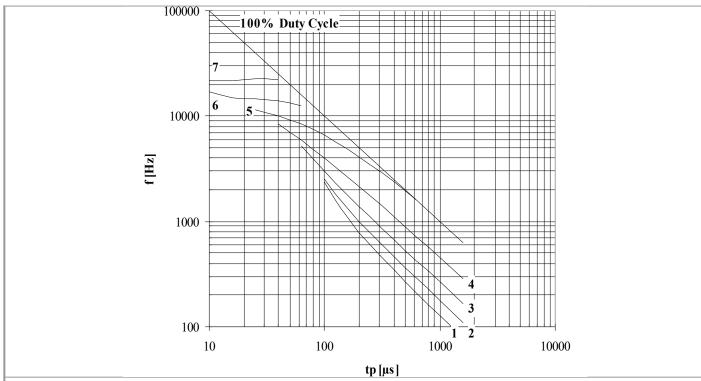
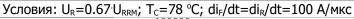


Рис. 20 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1-I_{\text{\tiny TM}}=5000~\text{A}$


 $2 - I_{\text{TM}} = 4000 \text{ A}$

 $3 - I_{TM} = 3000 A$

 $4-I_{\text{TM}}=2000~\text{A}$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$ $7 - I_{TM} = 250 A$

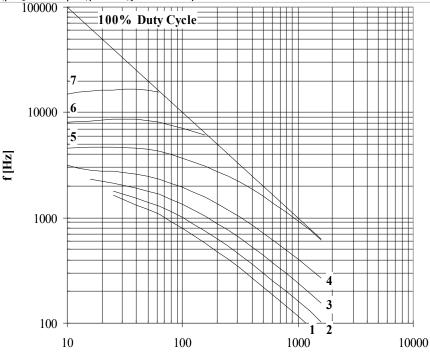


Рис. 21 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

to [us]

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6-I_{\text{TM}}=500\;\text{A}$

 $7 - I_{TM} = 250 A$

Условия: $U_R = 0.67 \cdot U_{RRM}$; $T_C = 78 \, ^{\circ}\text{C}$; $di_F/dt = di_R/dt = 500 \, \text{A/мкc}$

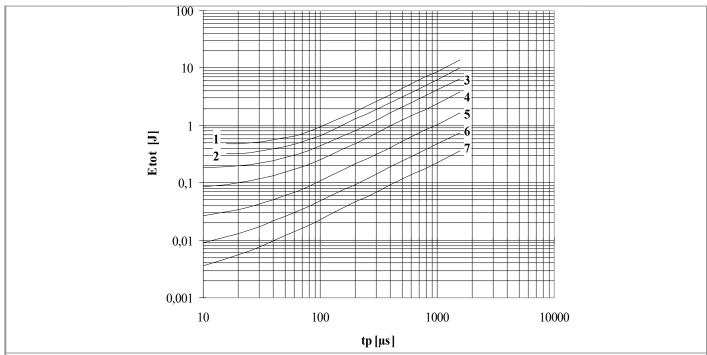


Рис. 22 — Зависимость энергии потерь за один синусоидальный импульс тока от длительности импульса

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $\begin{array}{l} 5 - I_{\text{TM}} = 1000 \; \text{A} \\ 6 - I_{\text{TM}} = 500 \; \text{A} \end{array}$

 $7 - I_{TM} = 250 A$

Условия: U_R≤3 В

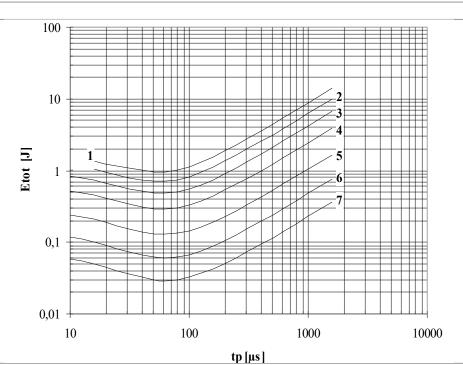


Рис. 23 — Зависимость энергии потерь за один синусоидальный импульс тока от длительности импульса

 $1 - I_{TM} = 5000 A$

 $2-I_{\text{TM}}=4000~\text{A}$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6-I_{\text{TM}}=500~\text{A}$

 $7 - I_{TM} = 250 A$

Условия: $U_R = 0.67 \cdot U_{RRM}$

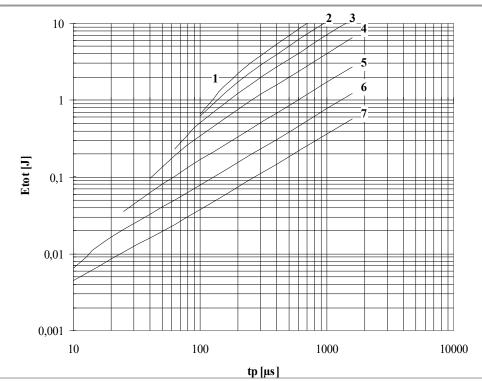


Рис. 24 — Зависимость энергии потерь за один прямоугольный импульс тока от длительности импульса

 $2-I_{\text{\tiny TM}}=4000~\text{A}$

 $3 - I_{TM} = 3000 A$

 $4-I_{\text{TM}}=2000~\text{A}$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$ $7 - I_{TM} = 250 A$

Условия: $U_R \le 3$ B; $di_F/dt = di_R/dt = 100$ A/мкс

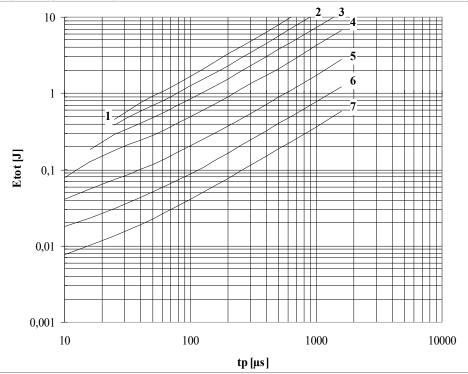


Рис. 25 — Зависимость энергии потерь за один прямоугольный импульс тока от длительности импульса

 $1 - I_{\text{TM}} = 5000 \text{ A}$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5-I_{\text{TM}}=1000\;\text{A}$

 $6-I_{\text{TM}}=500~\text{A}$

 $7 - I_{TM} = 250 \text{ A}$

Условия: $U_R \le 3$ B; $di_F/dt = di_R/dt = 500$ A/мкс

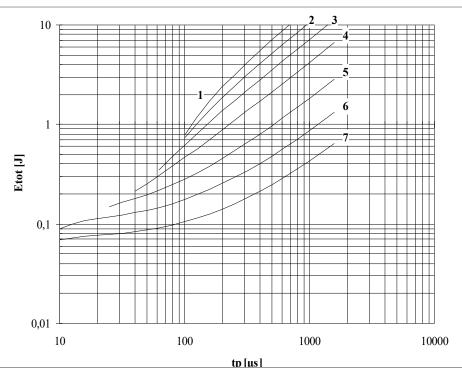


Рис. 26 — Зависимость энергии потерь за один прямоугольный импульс тока от длительности импульса

 $1-I_{\text{TM}}=5000~\text{A}$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 \text{ A}$ $7 - I_{TM} = 250 A$

Условия: $U_R=0.67 \cdot U_{RRM}$; $di_F/dt=di_R/dt=100 \text{ A/мкс}$

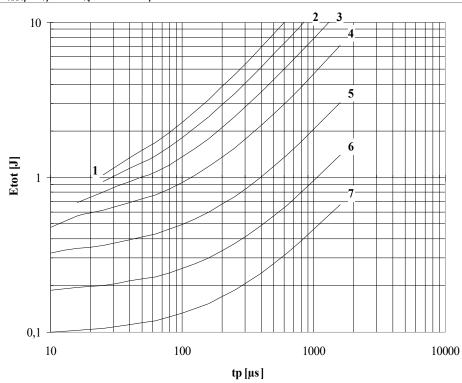
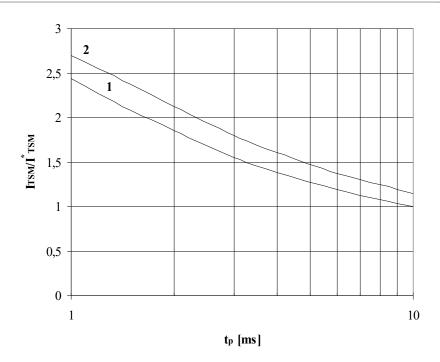


Рис. 27 — Зависимость энергии потерь за один прямоугольный импульс тока от длительности импульса

 $1-I_{\text{\tiny TM}}=5000~\text{A}$

 $2 - I_{TM} = 4000 A$


 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 \text{ A}$ $6 - I_{TM} = 500 \text{ A}$

 $7 - I_{TM} = 250 A$

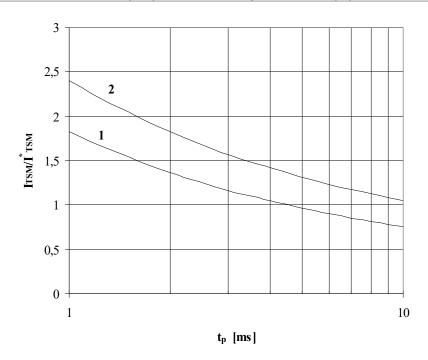

Условия: $U_R=0.67 \cdot U_{RRM}$; $di_F/dt=di_R/dt=500 \text{ A/мкc}$

Рис. 28 — Зависимость ударного тока I_{TSM} от длительности импульса t_p для полусинусоидального импульса $1-T_j{=}125~^{\circ}\text{C}$ $2-T_j{=}25~^{\circ}\text{C}$

Условия: U_R =0 В — максимальное значение обратного напряжения, которое прикладывается сразу после ударного тока

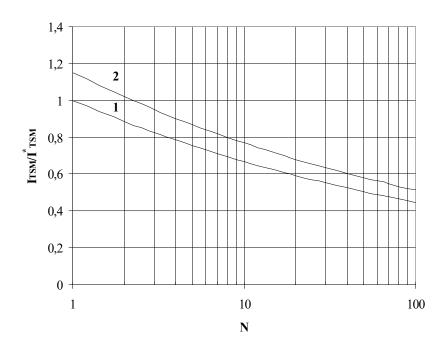

Типичное изменение I_{TSM} относительно нормированного I_{TSM}^* (I_{TSM}^* – см. информационный лист, $T_j = T_{j \text{ max}}$)

Рис. 29 — Зависимость ударного тока I_{TSM} от длительности импульса t_{p} для полусинусоидального импульса $1-T_{\text{j}}{=}125~^{\circ}\text{C}$ $2-T_{\text{j}}{=}25~^{\circ}\text{C}$

Условия: $U_R = 0.8 \cdot U_{RRM}$ — максимальное значение обратного напряжения, которое прикладывается сразу после ударного тока

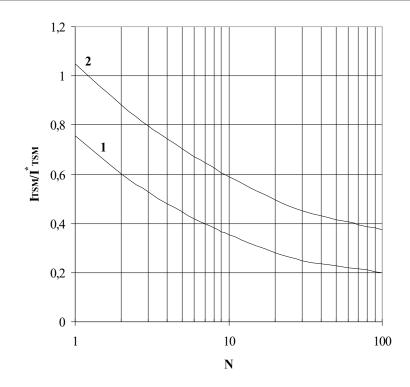

Типичное изменение I_{TSM} относительно нормированного I_{TSM}^* (I_{TSM}^* – см. информационный лист, $T_j = T_{j \text{ max}}$)

Рис. 30 — Ударный ток I_{TSM} от количества полусинусоидальных импульсов тока длительностью 10 мс $1-T_j{=}125~^{\circ}\text{C}$ $2-T_j{=}25~^{\circ}\text{C}$

Условия: U_R =0 В – максимальное значение обратного напряжения, которое прикладывается сразу после ударного тока

Типичное изменение I_{TSM} относительно нормированного I_{TSM}^* (I_{TSM}^* – см. информационный лист, $T_j = T_{j \text{ max}}$)

Рис. 31 — Ударный ток I_{TSM} от количества полусинусоидальных импульсов тока длительностью 10 мс $1-T_j{=}125^{\circ}\text{C}$ $2-T_j{=}25^{\circ}\text{C}$

Условия: $U_R = 0.8 \cdot U_{RRM}$ — максимальное значение обратного напряжения, которое прикладывается сразу после ударного тока

Типичное изменение I_{TSM} относительно нормированного I_{TSM}^* (I_{TSM}^* – см. информационный лист, $T_j = T_{j \text{ max}}$)