

## ПРОТОН-ЭЛЕКТРОТЕКС

Оптимальная коммутируемая мощность Низкие статические и динамические потери Разработан для промышленного применения

# Штыревой Низкочастотный Диод Тип Д161-320-16

| Средний прямой ток                           |     |         |           | $I_{FAV}$ |           | 320 A |     |      |      |      |      |      |      |      |
|----------------------------------------------|-----|---------|-----------|-----------|-----------|-------|-----|------|------|------|------|------|------|------|
| Повторяющееся импульсное обратное напряжение |     |         | $U_{RRM}$ |           | 3001600 B |       |     |      |      |      |      |      |      |      |
| U <sub>RRM</sub> , B                         | 300 | 400     | 500       | 600       | 700       | 800   | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 |
| Класс по напряжению 3 4 5 6 7                |     |         | 7         | 8         | 9         | 10    | 11  | 12   | 13   | 14   | 15   | 16   |      |      |
| T <sub>j</sub> , °C                          |     | -60+190 |           |           |           |       |     |      |      |      |      |      |      |      |

## ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

| Обозначение и наименование параметра                            |                                              |                                  | Значение                          |                                                                                                 | Условия измерения                                                                          |  |
|-----------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Параме                                                          | тры в проводящем состоянии                   |                                  |                                   |                                                                                                 |                                                                                            |  |
| I <sub>FAV</sub> Максимально допустимый средний прямой ток      |                                              | A                                | 320<br>354                        | T <sub>c</sub> =128 °C<br>T <sub>c</sub> =120 °C<br>180 эл. гр                                  |                                                                                            |  |
| $I_{FRMS}$                                                      | Действующий прямой ток                       | A                                | 502                               | T <sub>c</sub> =128 °C;<br>180 эл. град. синус; 50 Гц                                           |                                                                                            |  |
| т                                                               | VIDDIUM TOK                                  |                                  | 7.3<br>9.0                        | $T_{j}=T_{j \text{ max}}$ $T_{j}=25 \text{ °C}$                                                 | 180 эл. град. синус; $t_p$ =10 мс; единичный импульс; $U_R$ =0 В;                          |  |
| І <sub>ғѕм</sub> Ударный ток                                    |                                              | кА                               | 7.5<br>9.0                        | $T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$                                                     | 180 эл. град. синус;<br>t <sub>p</sub> =8.3 мс; единичный<br>импульс; U <sub>R</sub> =0 B; |  |
| I²t                                                             | Защитный показатель                          | A <sup>2</sup> C·10 <sup>3</sup> | 260<br>400                        | $T_{j}=T_{j \text{ max}}$ $T_{j}=25 \text{ °C}$                                                 | 180 эл. град. синус; $t_p$ =10 мс; единичный импульс; $U_R$ =0 В;                          |  |
|                                                                 | защитный показатель                          |                                  | 230<br>330                        | $T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$                                                     | 180 эл. град. синус;<br>t <sub>p</sub> =8.3 мс; единичный<br>импульс; U <sub>R</sub> =0 B; |  |
| Блокир                                                          | ующие параметры                              |                                  |                                   |                                                                                                 |                                                                                            |  |
| $U_{\text{RRM}}$                                                | Повторяющееся импульсное обратное напряжение | В                                | 3001600                           | $T_{j  \text{min}} < T_{j} < T_{j  \text{max}};$ 180 эл. град. синус; 50 Гц                     |                                                                                            |  |
| U <sub>RSM</sub> Неповторяющееся импульсное обратное напряжение |                                              | В                                | 3501860                           | $T_{j  \text{min}} < T_{j} < T_{j  \text{max}}; \ 180 \ эл. \ град. \ синус; единичный импульс$ |                                                                                            |  |
| $U_{R}$                                                         | Постоянное обратное напряжение               | В                                | 0.6 <sup>-</sup> U <sub>RRM</sub> | $T_j=T_{j \text{ max}};$                                                                        |                                                                                            |  |
| Теплові                                                         | ые параметры                                 |                                  |                                   |                                                                                                 |                                                                                            |  |
| $T_{\text{stg}}$                                                | Температура хранения                         | °C                               | -60+50                            |                                                                                                 |                                                                                            |  |
| $T_{j}$                                                         | Температура р-п перехода                     | °C                               | -60+190                           |                                                                                                 |                                                                                            |  |
| Механи                                                          | ческие параметры                             |                                  |                                   |                                                                                                 |                                                                                            |  |
| М                                                               | Крутящий момент затяжки                      | Нм                               | 2030                              |                                                                                                 |                                                                                            |  |
| а                                                               | Ускорение                                    | M/C <sup>2</sup>                 | 100                               |                                                                                                 |                                                                                            |  |

#### ХАРАКТЕРИСТИКИ

| Обозна                                                            | ачение и наименование характеристики     | Ед.<br>изм.  | Значение        | Условия измерения                                                                      |
|-------------------------------------------------------------------|------------------------------------------|--------------|-----------------|----------------------------------------------------------------------------------------|
| Характе                                                           | еристики в проводящем состоянии          |              |                 |                                                                                        |
| U <sub>FM</sub>                                                   | Импульсное прямое напряжение, макс       | В            | 1.35*<br>1.40*  | T <sub>j</sub> =25 °C; I <sub>FM</sub> =1005 A                                         |
| U <sub>F(TO)</sub>                                                | Пороговое напряжение, макс               | В            | 0.856           | $T_j=T_{j \text{ max}}$ ;                                                              |
| r <sub>T</sub>                                                    | Динамическое сопротивление, макс         | мОм          | 0.530           | $0.5~\pi~I_{\text{FAV}} < I_{\text{T}} < 1.5~\pi~I_{\text{FAV}}$                       |
| Блокир                                                            | ующие характеристики                     |              |                 |                                                                                        |
| Повторяющийся импульсный обратный ток, макс                       |                                          | мА           | 40              | $T_j = T_{j \text{ max}}$ , $U_R = U_{RRM}$                                            |
| Динами                                                            | ческие характеристики                    |              |                 |                                                                                        |
| $Q_r$                                                             | Заряд восстановления, макс               | мкКл         | 900             |                                                                                        |
| t <sub>rr</sub>                                                   | Время обратного восстановления, макс     | мкс          | 18              | $T_j = T_{j \text{ max}}$ ; $I_{FM} = 320 \text{ A}$ ; $di_R/dt = -10 \text{ A/MKC}$ ; |
| I <sub>rr</sub>                                                   | Обратный ток восстановления, макс        | А            | 100             | U <sub>R</sub> =100 B;                                                                 |
| Теплові                                                           | ые характеристики                        |              |                 |                                                                                        |
| R <sub>thjc</sub> Тепловое сопротивление p-n переход-корпус, макс |                                          | °С/Вт        | 0.150           | Постоянный ток                                                                         |
| Механи                                                            | ческие характеристики                    |              |                 |                                                                                        |
| m                                                                 | Масса, макс                              | Г            | 280             |                                                                                        |
| Ds                                                                | Длина пути тока утечки по<br>поверхности | мм<br>(дюйм) | 12.4<br>(4.882) |                                                                                        |
| Da                                                                | Длина пути тока утечки по воздуху        | мм<br>(дюйм) | 12.4<br>(4.882) |                                                                                        |

<sup>\*</sup> **1.35 В** – для диапазона классов по напряжению (3-10)

#### **МАРКИРОВКА**

| Д | 161 | 320 |   | 16 | УХЛ2 |
|---|-----|-----|---|----|------|
| 1 | 2   | 3   | 4 | 5  | 6    |

- 1. Д Низкочастотный диод
- 2. Конструктивное исполнение
- 3. Средний прямой ток, А
- 4. Полярность: X обратная; прямая не указывается
- 5. Класс по напряжению
- 6. Климатическое исполнение по ГОСТ 15150: УХЛ2, Т2

<sup>1,40</sup> В – для диапазона классов по напряжению (11-16)

# ГАБАРИТНЫЕ РАЗМЕРЫ Тип корпуса: **D.SA1** 24(0.945) мах Ø13 (0.512) DIA. Silicone tube. SW32 ø37 (1.456)max DIA.

| Тип Резьбы                               | W            | Н  |
|------------------------------------------|--------------|----|
| Метрическая Резьба Тип А (по требованию) | M16x1,5 – 8g | 13 |
| Метрическая Резьба Тип В                 | M20x1,5 – 8g | 15 |

| Поляниости        | Пример      | Условное    | Цвета |                |  |
|-------------------|-------------|-------------|-------|----------------|--|
| Полярность        | маркировки  | обозначение | Анод  | Катод          |  |
| Анод на основании | Д161-320-18 | 本           | -     | Красная трубка |  |

Все размеры в миллиметрах (дюймах)

Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, АО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.

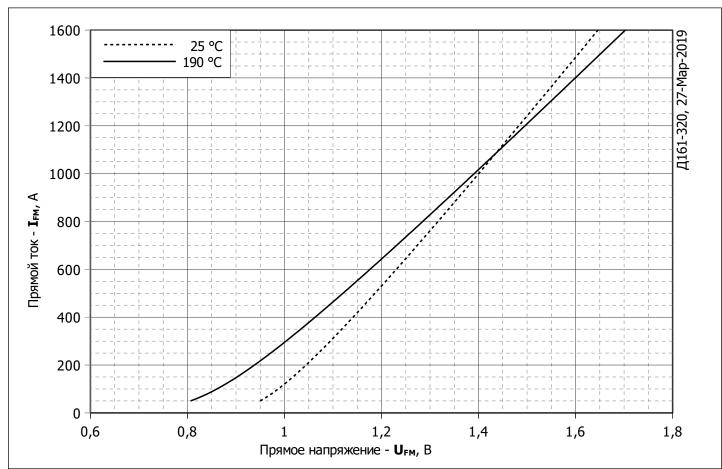



Рис. 1 – Предельная вольт-амперная характеристика

Аналитическая функция предельной вольт — амперной характеристики:

$$U_F \hspace{-0.1cm}=\hspace{-0.1cm} A \hspace{-0.1cm}+\hspace{-0.1cm} B \hspace{-0.1cm}\cdot\hspace{-0.1cm} i_F \hspace{-0.1cm}+\hspace{-0.1cm} C \hspace{-0.1cm}\cdot\hspace{-0.1cm} \ln \left(\hspace{-0.1cm} i_F \hspace{-0.1cm}+\hspace{-0.1cm} 1\hspace{-0.1cm}\right) \hspace{-0.1cm}+\hspace{-0.1cm} D \hspace{-0.1cm}\cdot\hspace{-0.1cm} \sqrt{\hspace{-0.1cm} i_F}$$

|   | Коэффициенты для графика |                           |  |  |  |  |  |
|---|--------------------------|---------------------------|--|--|--|--|--|
|   | $T_j = 25^{\circ}C$      | $T_j = T_{j \text{ max}}$ |  |  |  |  |  |
| Α | 0.83438000               | 0.59670000                |  |  |  |  |  |
| В | 0.00037956               | 0.00050555                |  |  |  |  |  |
| С | 0.02294800               | 0.05024200                |  |  |  |  |  |
| D | 0.00087941               | -0.00184500               |  |  |  |  |  |

Модель предельной вольт – амперной характеристики (см. Рис. 1).

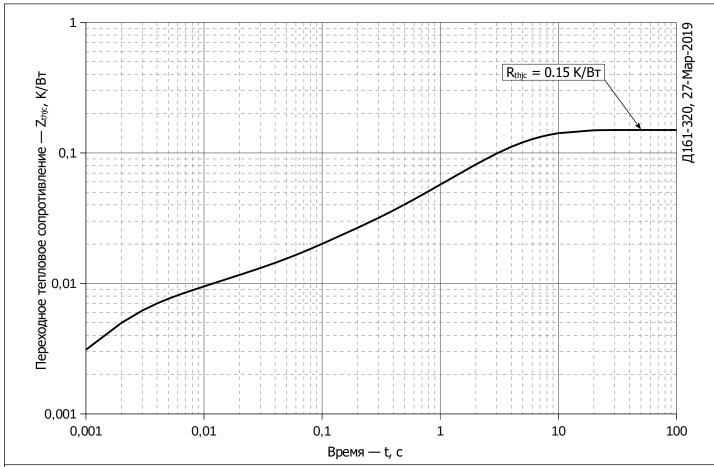



Рис. 2 — Зависимость переходного теплового сопротивления Z<sub>thjc</sub> от времени t

Аналитическая зависимость переходного теплового сопротивления переход — корпус:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left( 1 - e^{-\frac{t}{\tau_i}} \right)$$

Где i = 1 до n, n - число суммирующихся элементов.

 $\mathbf{t}$  = продолжительность импульсного нагрева в секундах.

 $\mathbf{Z}_{\mathsf{thjc}} = \mathsf{Тепловое}$  сопротивление за время t.

 $\mathbf{R}_{i}$ ,  $\tau_{i}$  = расчетные коэффициенты, приведенные в таблице.

#### Постоянный ток

| i                     | 1       | 2      | 3        | 4        | 5        | 6        |
|-----------------------|---------|--------|----------|----------|----------|----------|
| R <sub>i</sub> , K/BT | 0.07504 | 0.0516 | 0.007369 | 0.006977 | 0.003512 | 0.005502 |
| τ <sub>i</sub> , C    | 4.409   | 2.183  | 0.3382   | 0.07307  | 0.008189 | 0.001615 |

Модель переходного теплового сопротивления переход - корпус (см. Рис. 2)

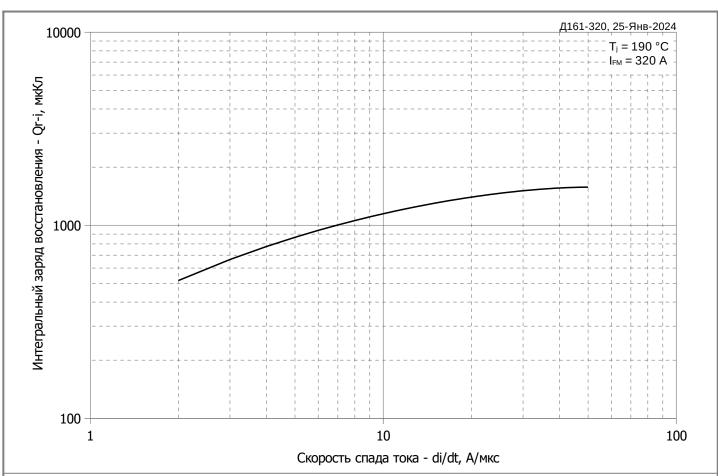



Рис. 3 — Зависимость максимального интегрального заряда восстановления  $Q_{r ext{-}i}$  от скорости спада прямого тока  $di_R/dt$ 

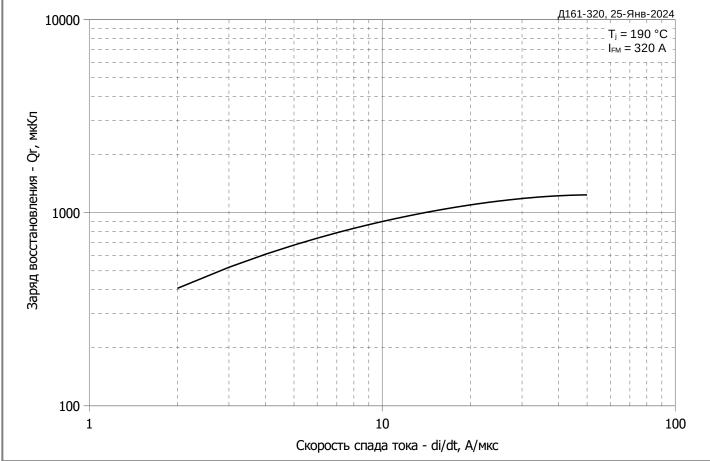



Рис. 4 — Зависимость максимального заряда восстановления  $Q_r$  от скорости спада прямого тока  $di_R/dt$  (по ГОСТ 24461, хорда 25%)

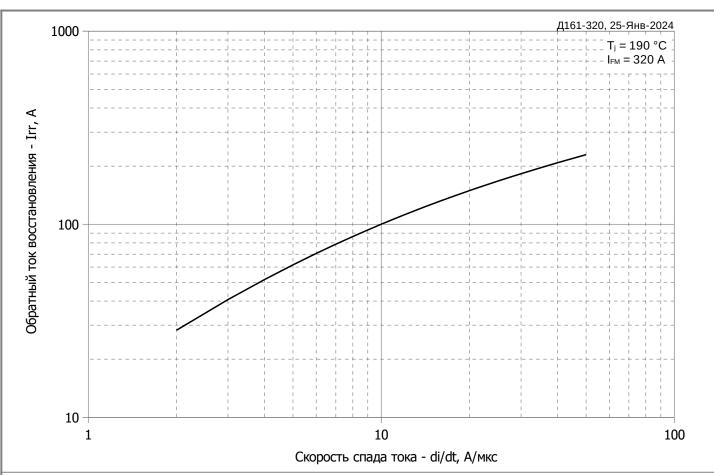



Рис. 5 — Зависимость максимального обратного тока восстановления  $I_{rr}$  от скорости спада прямого тока  $di_{R}/dt$ 

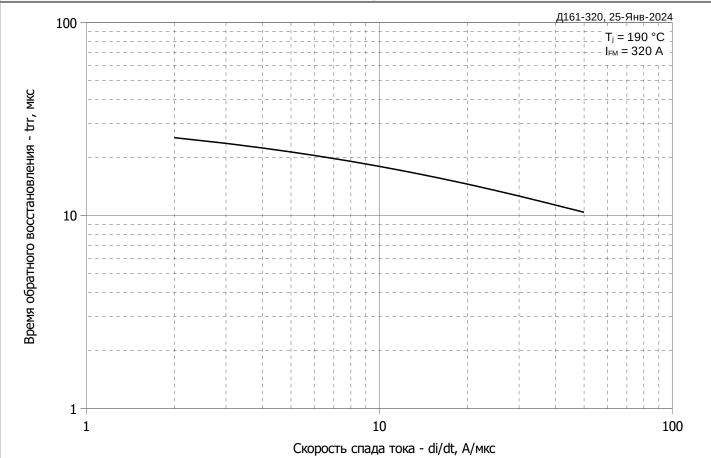



Рис. 6 - Зависимость максимального времени обратного восстановления  $t_{\rm rr}$  от скорости спада прямого тока  $di_{\rm R}/dt$  (по ГОСТ 24461, хорда 25%)

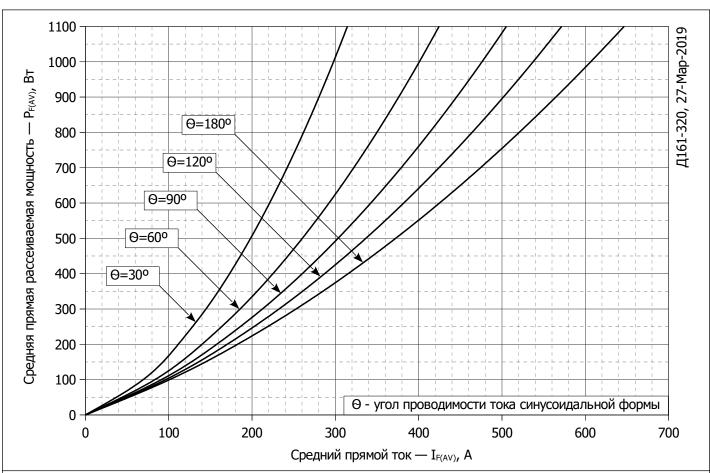



Рис. 7 - Зависимость потерь мощности  $P_{\text{FAV}}$  от среднего прямого тока  $I_{\text{FAV}}$  синусоидальной формы при различных углах проводимости (f=50 Гц)

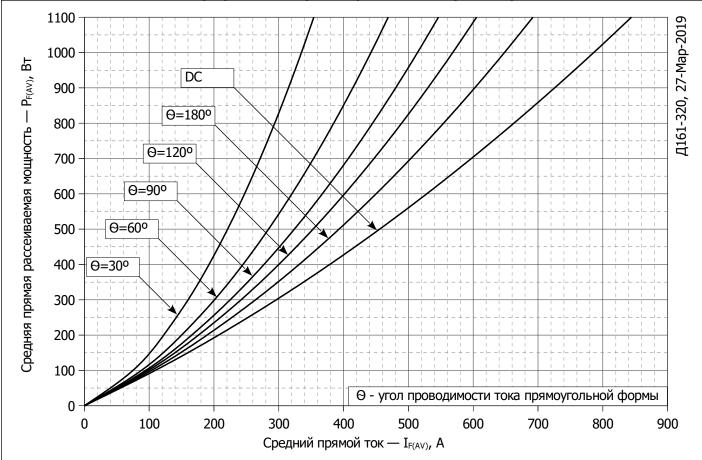



Рис. 8 — Зависимость потерь мощности P<sub>FAV</sub> от среднего прямого тока I<sub>FAV</sub> прямоугольной формы при различных углах проводимости (f=50 Гц)

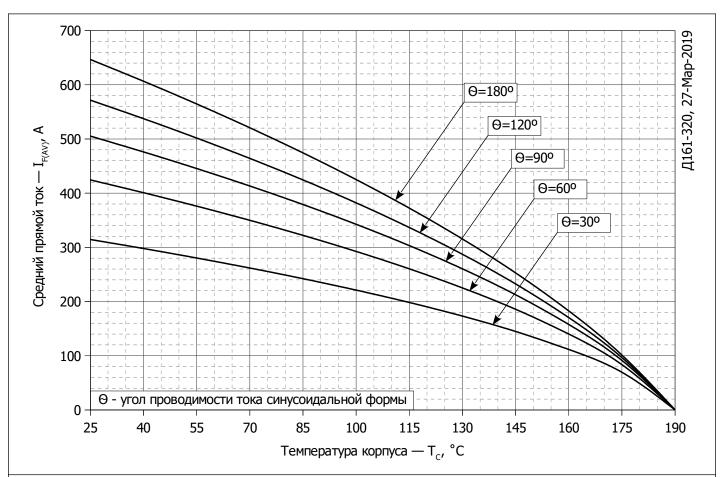



Рис. 9 — Зависимость среднего прямого тока  $I_{FAV}$  от температуры корпуса  $T_C$  для синусоидальной формы тока при различных углах проводимости (f=50  $\Gamma$ ц)

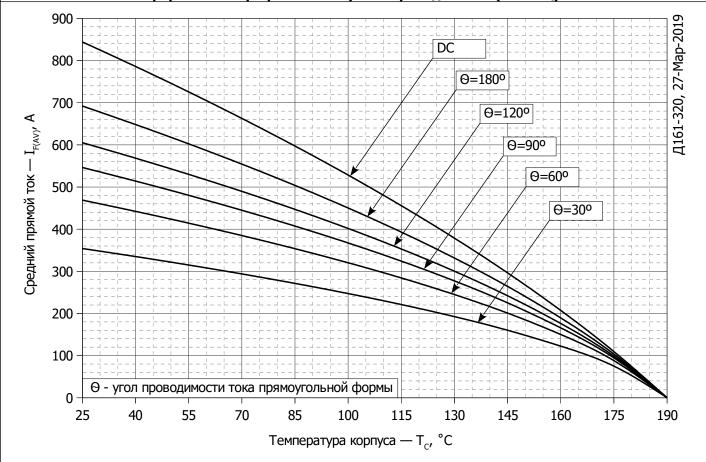



Рис. 10 - Зависимость среднего прямого тока  $I_{\text{FAV}}$  от температуры корпуса  $T_{\text{с}}$  для прямоугольной формы тока при различных углах проводимости (f=50 Гц)

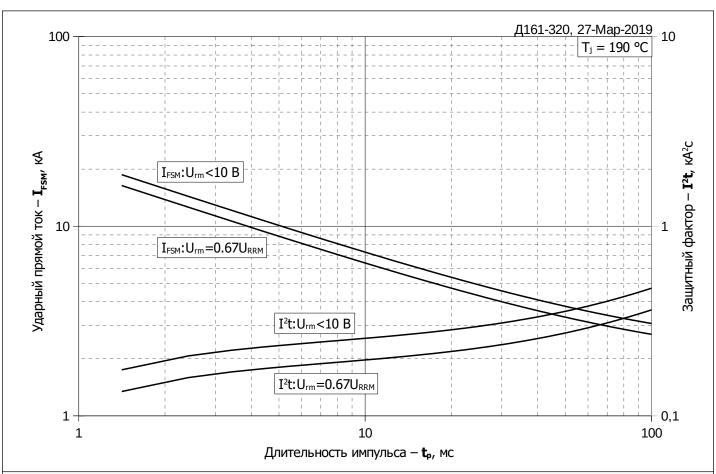



Рис. 11 — Зависимость максимальной амплитуды ударного прямого тока  $I_{\text{FSM}}$  и защитного фактора  $I^2t$  от длительности импульса  $t_{\text{p}}$ 

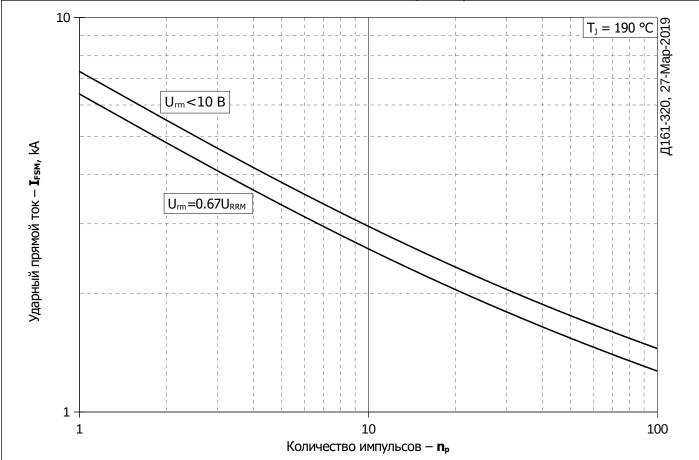



Рис. 12 — Зависимость максимальной амплитуды ударного прямого тока  $\mathbf{I}_{\text{FSM}}$  от количества импульсов  $\mathbf{n}_{\text{p}}$