

ПРОТОН-ЭЛЕКТРОТЕКС

Изолированное основание Корпус промышленного стандарта Упрощенная механическая конструкция, быстрая сборка Прижимная конструкция Двухпозиционный Тиристорный Модуль МТх-650-12-А2

Средний прямой ток		I_{TAV}	650 A	
Повторяющееся импульсное напряжение в закрытом состоянии		U _{DRM}	10001200 B	
Повторяющееся импульсное обратное напряжение		U_{RRM}		
Время выключения		t_q	160 мкс	
U _{DRM} , U _{RRM} , B	1000	110	00	1200
Класс по напряжению	10	11 12		
T _j , °C		-40	+140	

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозна	чение и наименование параметра	Ед. изм.	Значение	Условия измерения			
Параметрі	ы в проводящем состоянии						
\mathbf{I}_{TAV}	Максимально допустимый средний ток в открытом состоянии	А	650 722	T _c =92 °C; T _c =85 °C; 180 эл. гр	ад. синус; 50 Гц		
I_{TRMS}	Действующий ток в открытом состоянии	А	1020	T _c =92 °C; 180 эл. град. синус; 50 Гц			
т	VEDRULIÄ TOK B OTKRUTOM COCTOGUIMA	кА	17.5 20.0	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p = 10 мс; единичный импульс; U_D = U_R = 0 B; Импульс управления: I_G = 2 A; t_{GP} = 50 мкс; d_{IG} / dt ≥ 1 A/мкс		
${ m I}_{ extsf{TSM}}$	Ударный ток в открытом состоянии	KA	18.0 21.0	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p = 8.3 мс; единичный импульс; U_D = U_R = 0 B; Импульс управления: I_G = 2 A; t_G P= 50 мкс; d_G d t ≥ 1 A/мкс		
I²t	Защитный показатель	A ² C·10 ³	1500 2000	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p = 10 мс; единичный импульс; U_D = U_R = 0 В; Импульс управления: I_G = 2 A; t_{GP} = 50 мкс; d_{IG}/dt ≥ 1 A/мкс		
11	Защитный показатель	A C 10	1300 1800	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p = 8.3 мс; единичный импульс; U_D = U_R = 0 B; Импульс управления: I_G = 2 A; t_{GP} = 50 мкс; d_{IG} / dt ≥ 1 A/мкс		
Блокирую	щие параметры						
U _{DRM} , U _{RRM}	Повторяющееся импульсное обратное напряжение и повторяющееся импульсное напряжение в закрытом состоянии	В	10001200		:Т _{ј max} ; ад. синус; 50 Гц; ие разомкнуто		
U _{DSM} , U _{RSM}	Неповторяющееся импульсное обратное напряжение и неповторяющееся импульсное напряжение в закрытом состоянии	В	11001300		:T _{j max} ; ад. синус; единичный управление разомкнуто		
U _D , U _R	Постоянное обратное и постоянное прямое напряжение	В	0.6 [·] U _{DRM} 0.6 [·] U _{RRM}	T _j =T _{j max} ; управлени	ие разомкнуто		
Параметрі	ы управления						
${ m I}_{\sf FGM}$	Максимальный прямой ток управления	Α	8	TT.			
U_{RGM}	Максимальное обратное напряжение управления	В	5	$T_j = T_{j \text{ max}}$			
P_{G}	Максимальная рассеиваемая мощность по управлению	Вт	4	Т _ј =Т _{ј мах} дл управлени	пя постоянного тока ия		
Параметрі	ы переключения		_				
(di _T /dt) _{crit}	Критическая скорость нарастания тока в открытом состоянии (f=1 Hz)	А/мкс	500	Импульс у	J _D =0.67·U _{DRM} ; I _{TM} =3100 A; иправления: I _G =2 A; ис; di _G /dt≥2 A/мкс		
	параметры			i			
T _{stg}	Температура хранения	°C	-40+50				
T _j	Температура р-п перехода	°C	-40+140				
T _{c op}	Рабочая температура корпуса	°C	-4 0+125				
	ские параметры	, 2		i			
a	Ускорение	M/C ²	50				

ХАРАКТЕРИСТИКИ

Обозначе	ние и наименование характеристики	Ед. изм.	Значение)	√словия измерения	
Характери	истики в проводящем состоянии	713111				
U _{тм}	Импульсное напряжение в открытом состоянии, макс	В	1.45	T _j =25 °C; I	тм= 1978 А	
U _{T(TO)}	Пороговое напряжение, макс	В	0.855	T T .		
r _T	Динамическое сопротивление в открытом состоянии, макс	мОм	0.299	$T_j = T_{j \text{ max}};$ $0.5 \pi I_{TAV} <$	$I_{\text{T}} <$ 1.5 π I_{TAV}	
\mathbf{I}_{L}	Ток включения, макс	мА	1000		J _D =12 B; правления: I _G =2 A; ;; di _G /dt≥1 A/мкс	
\mathbf{I}_{H}	Ток удержания, макс	мА	300	T _j =25 °C; U _D =12 B; y	правление разомкнуто	
Блокирую	щие характеристики					
${ m I}_{ m DRM}$, ${ m I}_{ m RRM}$	Повторяющийся импульсный обратный ток и повторяющийся импульсный ток в закрытом состоянии, макс	мА	70 3.00	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	U _D =U _{DRM} ; U _R =U _{RRM}	
(du _D /dt) _{crit}	Критическая скорость нарастания напряжения в закрытом состоянии ¹⁾ , мин	В/мкс	200, 320, 500, 1000, 1600, 2000, 2500	$T_j = T_{j \text{ max}};$ $U_D = 0.67 \cdot U_D$	_{км} ; управление разомкнуто	
Характери	истики управления					
U_{GT}	Отпирающее постоянное напряжение управления, макс	В	3.00 2.50 1.50	$ T_j = T_{j \text{ min}} $ $ T_j = 25 \text{ °C} $ $ T_j = T_{j \text{ max}} $	U _D =12 B; I _D =3 A;	
$ m I_{GT}$	Отпирающий постоянный ток управления, макс	мА	400 250 150	$T_{j} = T_{j \text{ min}}$ $T_{j} = 25 \text{ °C}$ $T_{j} = T_{j \text{ max}}$	Постоянный ток управления	
U_{GD}	Неотпирающее постоянное напряжение управления, мин	В	0.45	$T_{j}=T_{j \text{ max}};$ $U_{D}=0.67 \cdot U_{D}$		
I_{GD}	Неотпирающий постоянный ток управления, мин	мА	50.00	Постоянный ток управления		
Динамиче	ские характеристики	1				
t _{gd}	Время задержки, макс	МКС	0.80	1 -	$U_{D}=600 \text{ B; } I_{TM}=I_{TAV};$	
t_{gt}	Время включения, макс	мкс	2.00		A/мкс; правления: I _G =2 A; U _G =20 B; :; di _G /dt=2 A/мкс	
t_q	Время выключения ²⁾ , макс	мкс	160		B/MKC ; $T_j=T_{j max}$; $I_{TM}=I_{TAV}$; A/MKC ; $U_R=100$ B ; DRM ,	
Q_{rr}	Заряд обратного восстановления, макс	мкКл	1490	TT. • I		
t _{rr}	Время обратного восстановления, макс	мкс	22	$T_j=T_{j \text{ max}}; I_{TI}$ $di_R/dt=-10 I_R$ $U_R=100 B$		
\mathbf{I}_{rr}	Обратный ток восстановления, макс	Α	135	J. 100 D		
Тепловые	характеристики	1				
	Тепловое сопротивление p-n переход-корпус, макс					
R _{thjc}	на модуль	°С/Вт	0.0275	180 эл. гра	д. синус; 50 Гц	
· surje	на позицию	°С/Вт	0.0550	тоо эл. град. сипус, эо гц		
	на модуль	°С/Вт	0.0265	Постоянны	й ток	
	на позицию	°С/Вт	0.0530		•	
R_{thch}	Тепловое сопротивление корпус-охладитель, макс					
• NINCH	на модуль	°С/Вт	0.0100	_		
	на позицию	°С/Вт	0.0200			

Характеристики изоляции									
l			3.00	синус; 50 Гц;	t=60 c				
U _{ISOL}	Электрическая прочность изоляции	кВ	3.60	действующее значение	t=1 c				
Механические характеристики									
M ₁	M_1 Момент затяжки основания (M6) $^{3)}$ Нм 6.00 Допуск \pm 15%								
M ₂	Момент затяжки выводов $(M10)^3$ Нм 12.00 Допуск \pm 15%								
m	Масса, макс	Г	1500						

MAP	МАРКИРОВКА											
MT	3	-	650	-	12	-	A2	T2	-	A2	-	У2
1	2		3		4		5	6		7		8

- 1. Тиристорный модуль (МТ) Тиристорно-диодный модуль (МТ/Д) Диодно-тиристорный модуль (МД/Т)
- 2. Схема включения
- 3. Средний прямой ток, А
- 4. Класс по напряжению
- 5. Критическая скорость нарастания напряжения в закрытом состоянии
- 6. Группа по времени выключения $(du_D/dt=50 \text{ B/мкc})$
- Тип корпуса (М.А2)
- 8. Климатическое исполнение по ГОСТ 15150: У2

ПРИМЕЧАНИЕ

1) Критическая скорость нарастания напряжения в закрытом состоянии

Обозначение группы	P2	K2	E2	A2	T1	P1	M1
(du _D /dt) _{crit} , В/мкс	200	320	500	1000	1600	2000	2500

 $^{2)}$ Время выключения ($du_D/dt=50$ В/мкс)

Обозначение группы	T2
t _q , мкс	160

³⁾ Резьба должна быть смазана

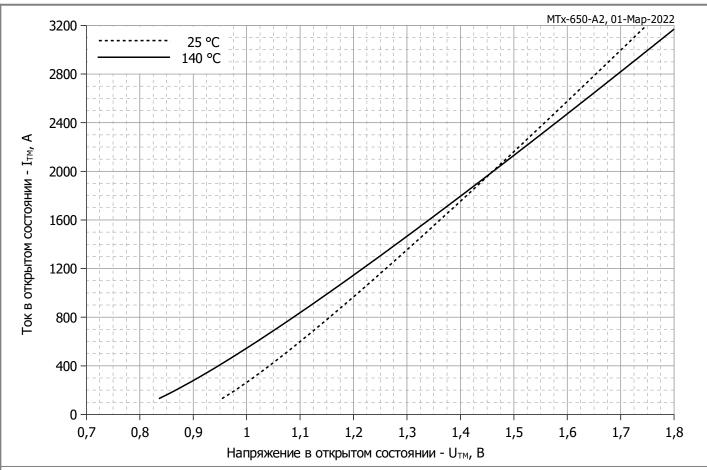


Рис. 1 — Предельная вольт — амперная характеристика

Аналитическая функция предельной вольт — амперной характеристики:

$$V_T = A + B \cdot i_T + C \cdot \ln(i_T + 1) + D \cdot \sqrt{i_T}$$

	Коэффициенты для графика $T_j = 25^{\circ}C$ $T_j = T_{j \text{ max}}$						
Α	0.87729876	0.74835131					
В	0.00020148	0.00023105					
С	0.00142269	-0.00227084					
D	0.00379302	0.00599501					

Модель предельной вольт – амперной характеристики (см. Рис. 1)

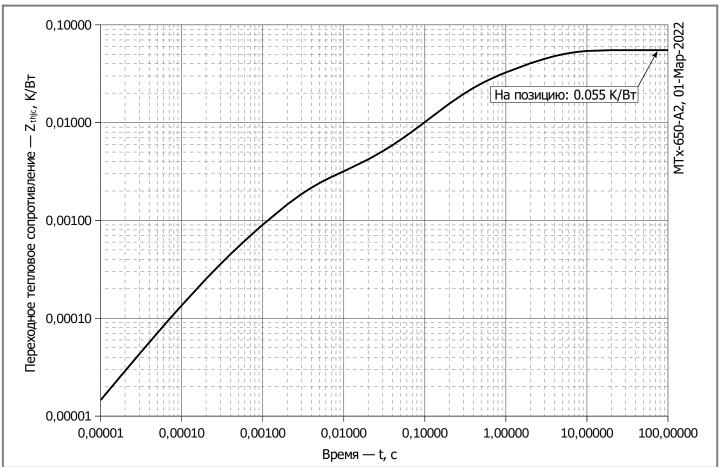
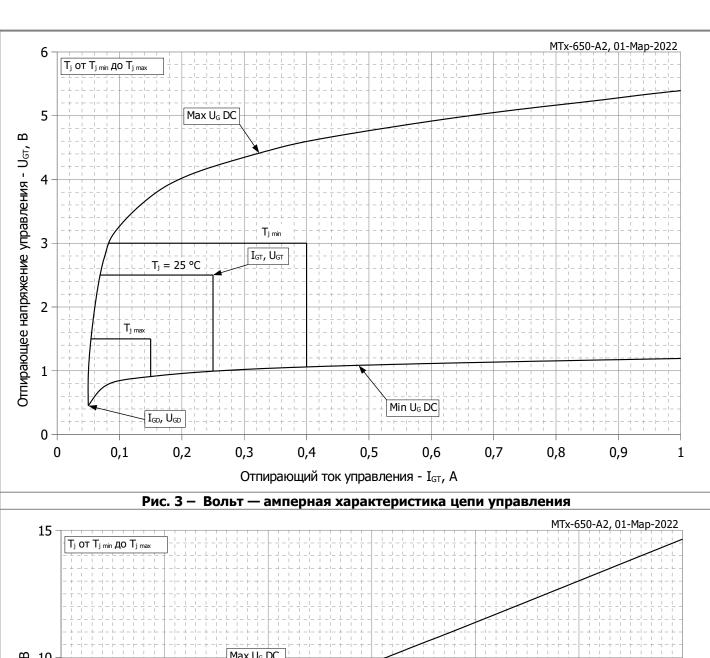


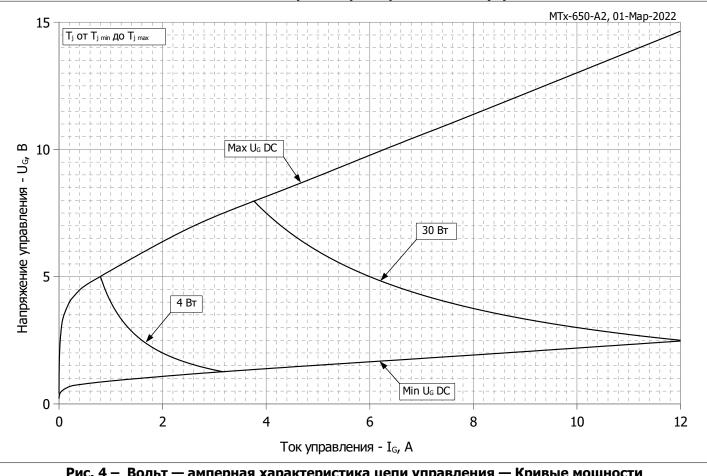
Рис. 2 — Зависимость переходного теплового сопротивления Z_{thjc} от времени t

Аналитическая зависимость переходного теплового сопротивления переход — корпус:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left(1 - e^{-\frac{t}{\tau_i}} \right)$$

Где i = 1 to n, n – число суммирующихся элементов.


t = продолжительность импульсного нагрева в секундах.


 $\mathbf{Z}_{\text{thjc}} = \text{Тепловое сопротивление за время t.}$

 ${\bf R}_{{f i},\, {f au}_{{f i}}} = {\sf pac}$ четные коэффициенты, приведенные в таблице.

i	1	2	3	4	5	6
R _i , K/BT	0.0249	0.0112	0.01635	0.0006528	0.001791	0.0001363
τ _i , C	3.132	1.000	0.2335	0.01038	0.002348	0.0002448

Модель переходного теплового сопротивления переход - корпус (см. Рис. 2)

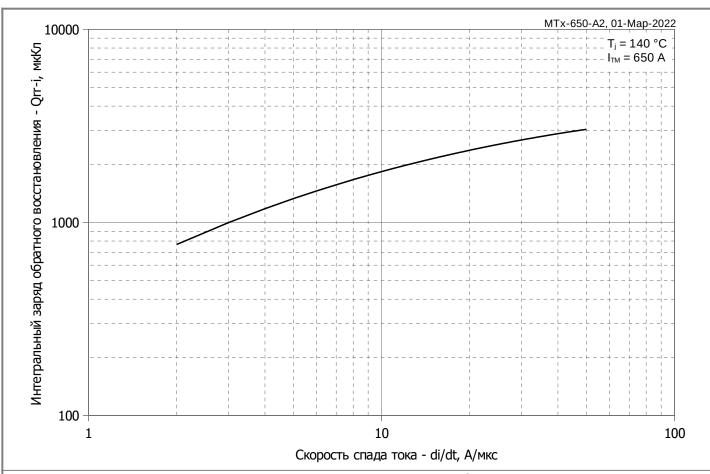


Рис. 5 — Зависимость максимального интегрального заряда обратного восстановления Q_{rr-i} от скорости спада тока di_R/dt в открытом состоянии

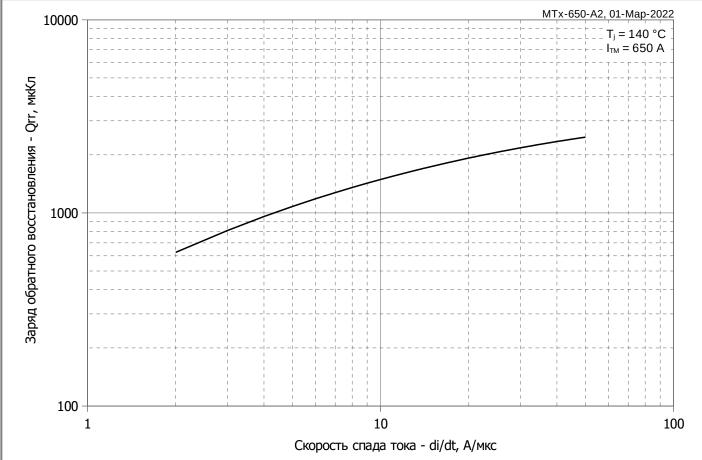


Рис. 6 — Зависимость максимального заряда обратного восстановления Q_{rr} от скорости спада тока di_R/dt (по ГОСТ 24461, хорда 25%) в открытом состоянии

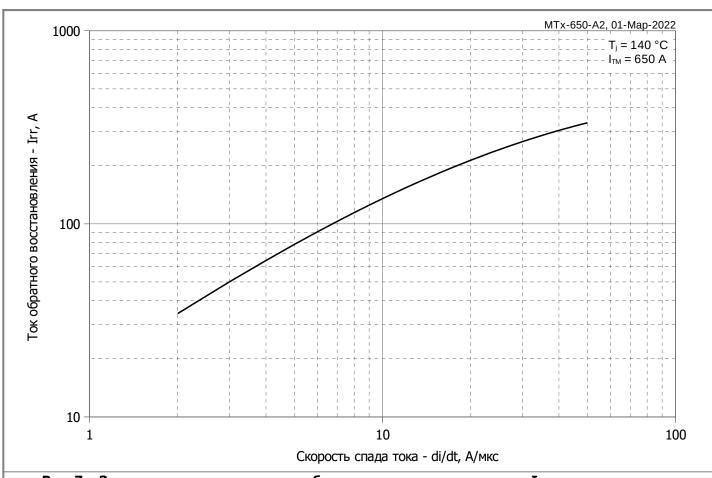


Рис. 7 — Зависимость максимального обратного тока восстановления \mathbf{I}_{rr} от скорости спада тока di_R/dt в открытом состоянии

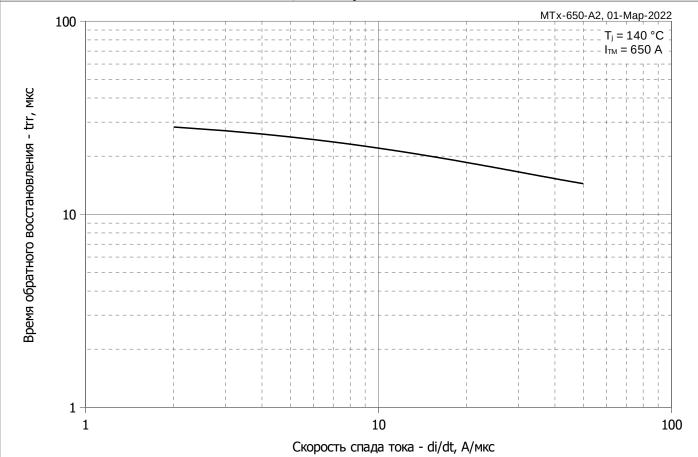


Рис. 8 - Зависимость максимального времени обратного восстановления $t_{\rm rr}$ от скорости спада тока $di_{\rm R}/dt$ (по ГОСТ 24461, хорда 25%) в открытом состоянии

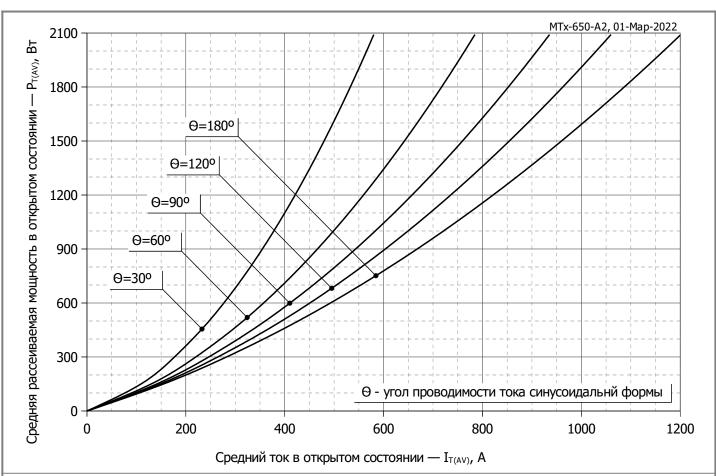


Рис. 9 - Зависимость потерь мощности P_{TAV} от среднего тока в открытом состоянии I_{TAV} синусоидальной формы при различных углах проводимости (f=50 Гц)

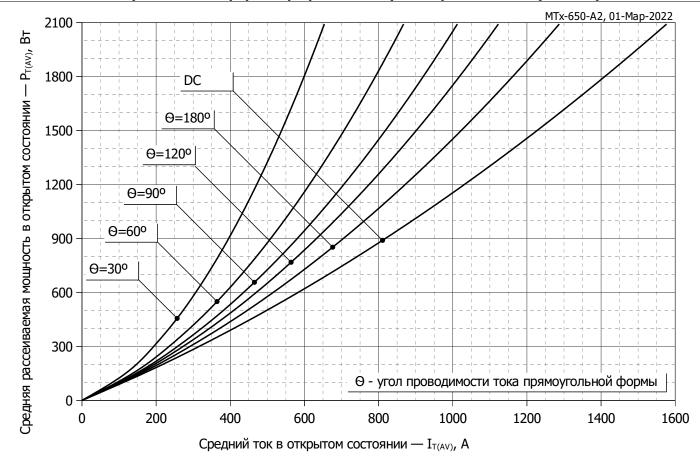


Рис. 10 — Зависимость потерь мощности P_{TAV} от среднего тока в открытом состоянии I_{TAV} прямоугольной формы при различных углах проводимости (f=50 Гц)

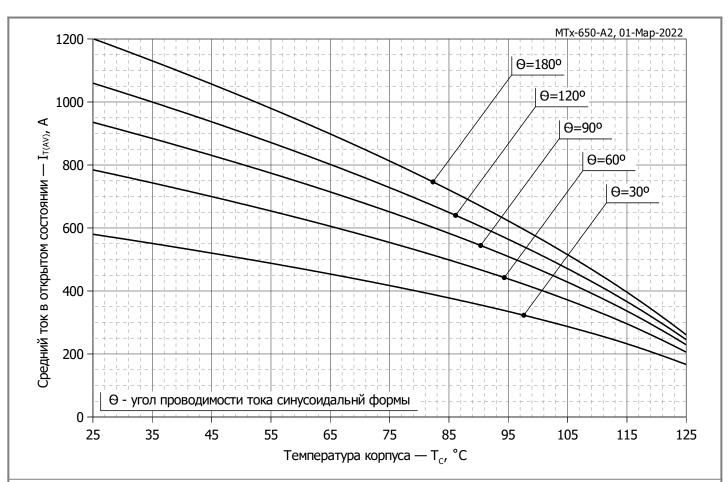


Рис. 11 — Зависимость среднего тока в открытом состоянии I_{TAV} от температуры корпуса T_{c} для синусоидальной формы тока при различных углах проводимости (f=50 Γ ц)

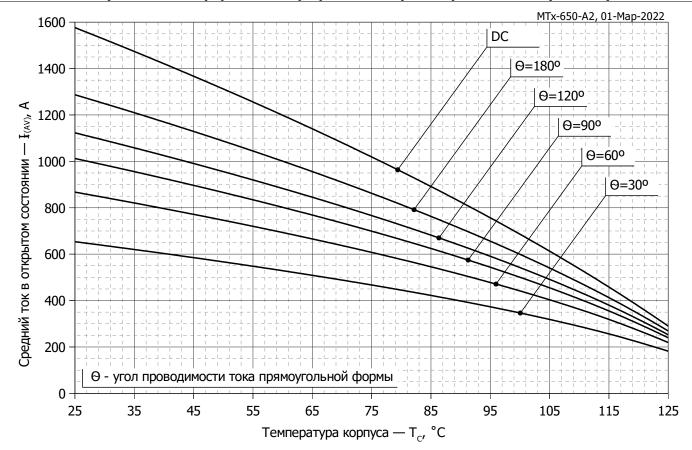


Рис. 12 - Зависимость среднего тока в открытом состоянии I_{TAV} от температуры корпуса T_C для прямоугольной формы тока при различных углах проводимости (f=50 Гц)

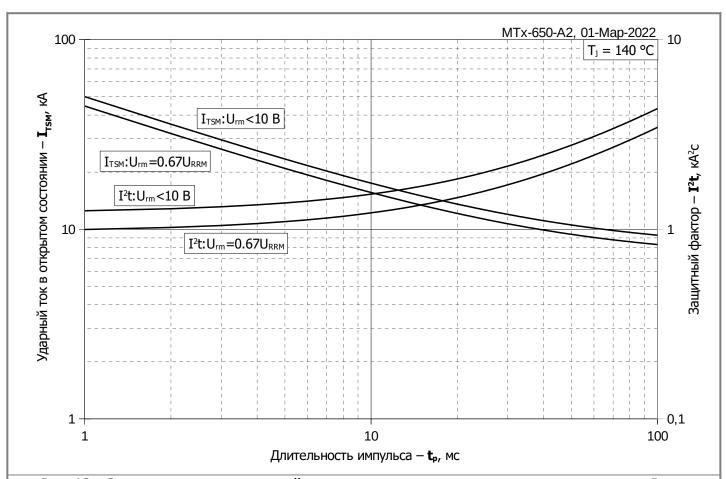


Рис. 13 — Зависимость максимальной амплитуды ударного тока в открытом состоянии $\mathbf{I}_{\mathsf{TSM}}$ и защитного фактора \mathbf{I}^2 t от длительности импульса \mathbf{t}_{p}

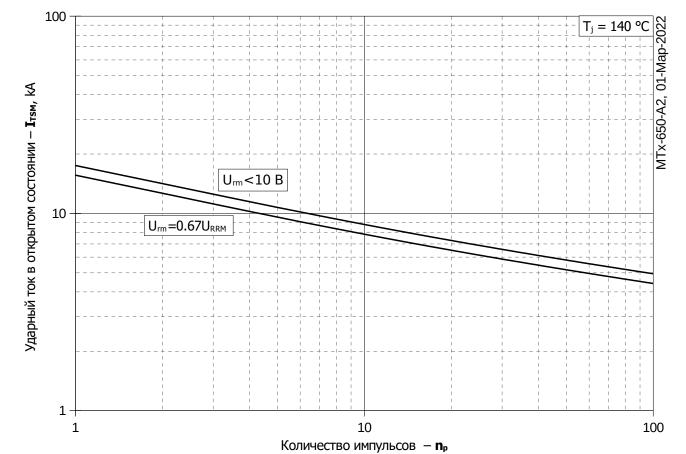


Рис. 14 — Зависимость максимальной амплитуды ударного тока в открытом состоянии I_{TSM} от количества импульсов n_{p}