

ПРОТОН-ЭЛЕКТРОТЕКС

Изолированное основание Корпус промышленного стандарта Упрощенная механическая конструкция, быстрая сборка Прижимная конструкция Двухпозиционный Диодный Модуль МДх-1000-28-D

Средний прямой ток			I _{FAV}		1000 A		
Повторяющееся импульсное обратное напряжение			U_{RRM}	20002800 B			
U _{RRM} , B	2000	220	00	240	00	2600	2800
Класс по напряжению	20	22		24		26	28
T _j , °C	-4 0+150						

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозначение и наименование параметра		Ед. изм.	Значение		Условия измерения	
Параме	тры в проводящем состоянии					
${ m I}_{\sf FAV}$	Максимально допустимый средний прямой ток	A	1000 885	T _c =91 °C; T _c =100 °C; 180 эл. град. синус; 50 Гц		
I_{FRMS}	Действующий прямой ток	А	1570	T _c =91 °C; 180 эл. град. синус; 50 Гц		
I_{FSM}	VEDDULIÄ TOK	кА	32.0 37.0	$T_j = T_{j \text{ max}}$ $T_j = 25 \text{ °C}$	180 эл. град. синус; t_p =10 мс; единичный импульс; U_R =0 В;	
	Ударный ток		34.0 39.0	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t _p =8.3 мс; единичный импульс; U _R =0 B;	
I²t	Защитный показатель	A ² c·10 ³	5100 6800	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p =10 мс; единичный импульс; U_R =0 В;	
			4700 6300	$T_{j}=T_{j \text{ max}}$ $T_{j}=25 \text{ °C}$	180 эл. град. синус; t _p =8.3 мс; единичный импульс; U _R =0 B;	
Блокиру	ующие параметры					
U_{RRM}	Повторяющееся импульсное обратное напряжение	В	20002800	T _{j min} < T _j <t<sub>j max; 180 эл. град. синус; 50 Гц</t<sub>		
U_{RSM}	Неповторяющееся импульсное обратное напряжение	В	21002900	$T_{j \text{min}} < T_{j} < T_{j \text{max}}; \ 180 \ $ эл. град. синус; единичный импульс		
U_{R}	Постоянное обратное напряжение	В	0.6 ⁻ U _{RRM}	$T_j=T_{j \text{ max}};$		
Тепловы	ые параметры					
T_{stg}	Температура хранения	°C	-40+50			
T_{j}	Температура p-n перехода	°C	-40+150			
$T_{c \ op}$	Рабочая температура корпуса	°C	-40+125			
Механи	ческие параметры					
а	Ускорение	M/C ²	50			

ХАРАКТЕРИСТИКИ

Обозначение и наименование характеристики			Значение	Условия измерения	
Характе	ристики в проводящем состоянии				
U_{FM}	Импульсное прямое напряжение, макс	В	1.38	T _j =25 °C; I _{FM} =3140 A	
U _{F(TO)}	Пороговое напряжение, макс	В	0.80	$T_j = T_{j \text{ max}}$;	
r _T	Динамическое сопротивление, макс	мОм	0.150	$0.5~\pi~I_{\text{FAV}} < I_{\text{T}} < 1.5~\pi~I_{\text{FAV}}$	
Блокиру	ующие характеристики				
I_{RRM}	Повторяющийся импульсный обратный ток, макс	мА	70 4.00		
Тепловы	ые характеристики				
_	Тепловое сопротивление p-n переход-корпус, макс				
R_{thjc}	на модуль	°С/Вт	0.0250		
	на позицию	°С/Вт 0.0500			
R _{thch}	Тепловое сопротивление корпус-охладитель, макс			180 эл. град. синус; 50 Гц	
	на модуль	°С/Вт	0.0080		
	на позицию	°С/Вт	0.0160		

Характеристики изоляции							
U _{ISOL}	STOKENWOOKSE ENOUGOET MOOFELING	кВ	3.00	синус; 50 Гц;	t=60 c		
	Электрическая прочность изоляции		3.60	действующее значение	t=1 c		
Механические характеристики							
M ₁	Момент затяжки основания (M8) ¹⁾	Нм	9.00	Допуск ± 15%			
M ₂	Момент затяжки выводов (M12) ¹⁾	Нм	18.00	Допуск ± 15%			
m	Масса, макс	Г	4100				

МАРКИРОВКА	ПРИМЕЧАНИЕ
МД 3 - 1000 - 28 - D - У2 1 2 3 4 5 6 1. МД – Диодный Модуль 2. Схема включения 3. Средний прямой ток, А 4. Класс по напряжению 5. Тип корпуса (М.х) 6. Климатическое исполнение по ГОСТ 15150: У2	1) Резьба должна быть смазана
Сертифицирован UL, файл № E255404	

Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, АО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.

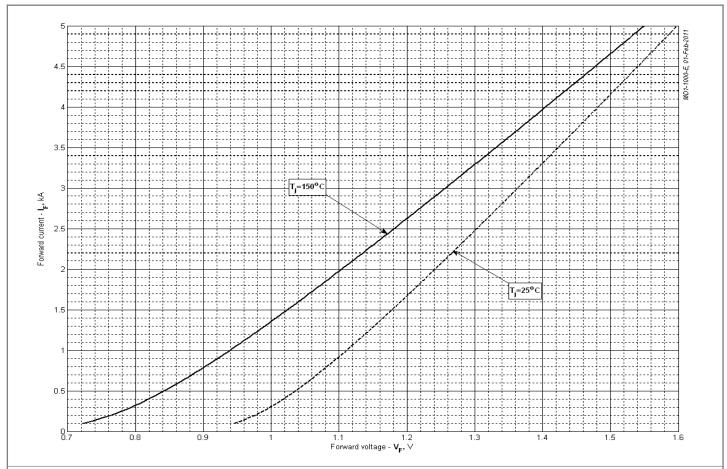


Fig 1 – On-state characteristics of Limit device

Аналитическая функция предельной вольт — амперной характеристики:

$$V_F = A + B \cdot i_F + C \cdot \ln(i_F + 1) + D \cdot \sqrt{i_F}$$

	Coefficients for max curves					
	T _j = 25°C	$T_j = 25^{\circ}C$ $T_j = T_{j \text{ max}}$				
Α	0.867101	0.613247				
В	0.080426	0.093879				
С	-0.153566	-0.217982				
D	0.270074	0.383360				

Модель предельной вольт – амперной характеристики (см. Рис. 1).

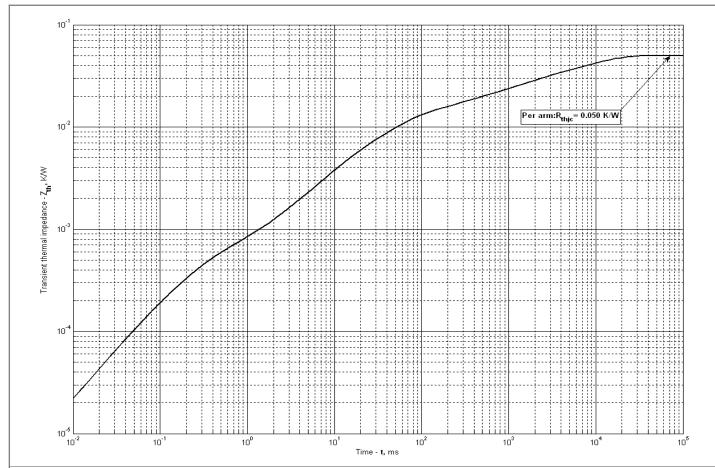
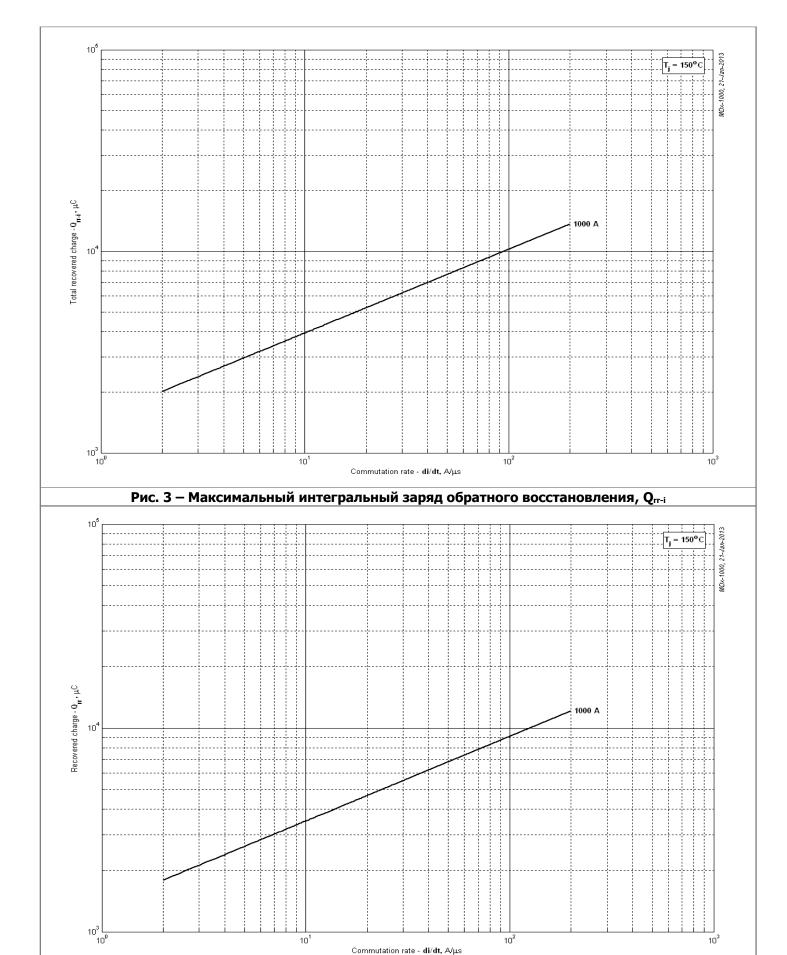


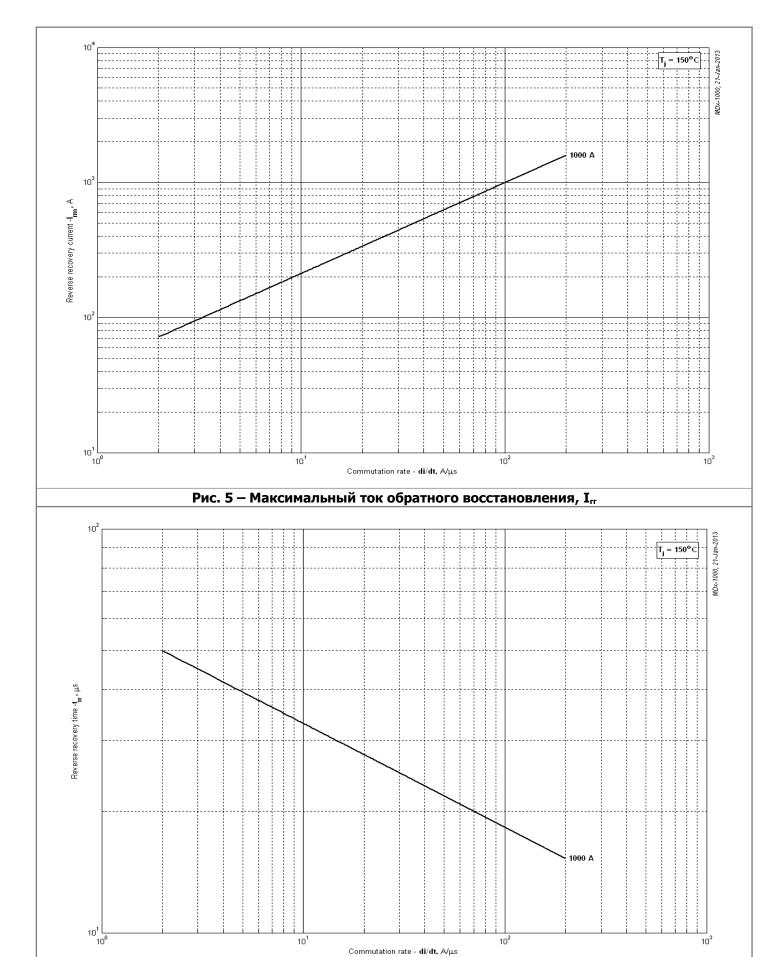
Рис. 2 - Переходное тепловое сопротивление

Аналитическая зависимость переходного теплового сопротивления переход — корпус:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left(1 - e^{-\frac{t}{\tau_i}} \right)$$

Где i = 1 до n, n — число суммирующихся элементов.


 \mathbf{t} = продолжительность импульсного нагрева в секундах.


 $\mathbf{Z}_{\text{thjc}} = \text{Тепловое сопротивление за время t.}$

 ${\bf R}_{i,}\,{\bf t}_{i}$ = расчетные коэффициенты, приведенные в таблице.

i	1	2	3	4	5	6
R _i , K/W	0.02506	0.009643	0.00348	0.009712	0.001719	0.0004399
τ _i , S	8.474	1.110	0.2289	0.04529	0.009524	0.0002414

Модель переходного теплового сопротивления переход - корпус (см. Рис. 2)

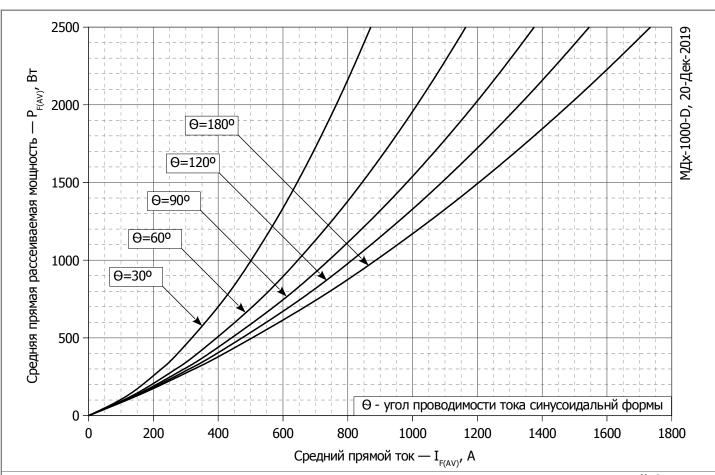


Рис. 7 — Зависимость потерь мощности P_{FAV} от среднего прямого тока I_{FAV} синусоидальной формы при различных углах проводимости (f=50 Гц)

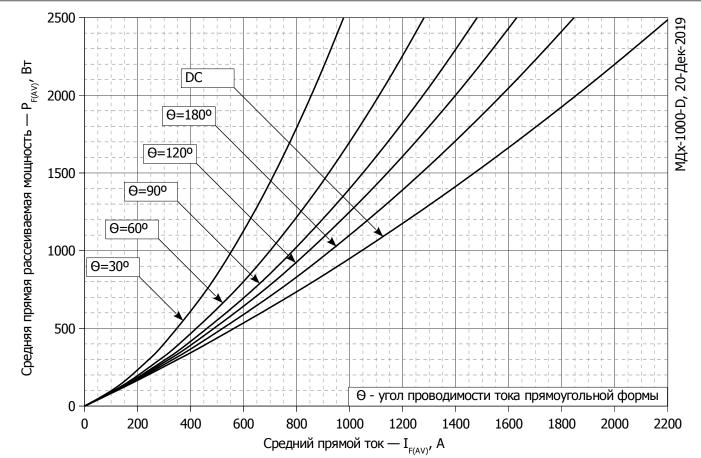


Рис. 8 — Зависимость потерь мощности P_{FAV} от среднего прямого тока I_{FAV} прямоугольной формы при различных углах проводимости (f=50 Гц)

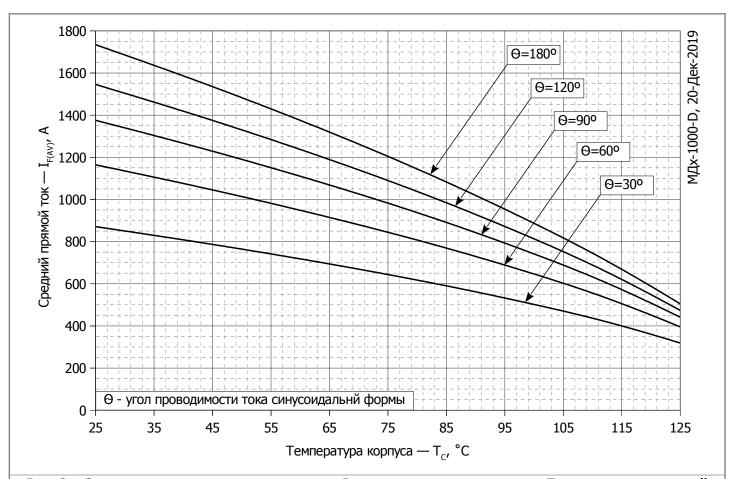


Рис. 9 - Зависимость среднего прямого тока I_{FAV} от температуры корпуса T_c для синусоидальной формы тока при различных углах проводимости (f=50 Гц)

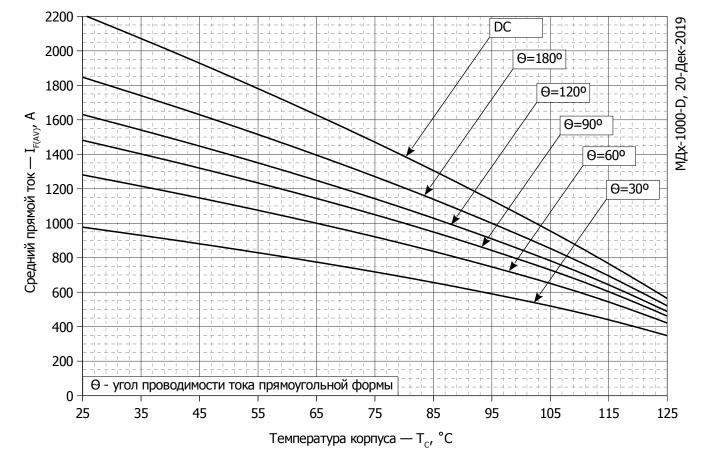


Рис. 10 — Зависимость среднего прямого тока I_{FAV} от температуры корпуса T_c для прямоугольной формы тока при различных углах проводимости (f=50 Γ ц)

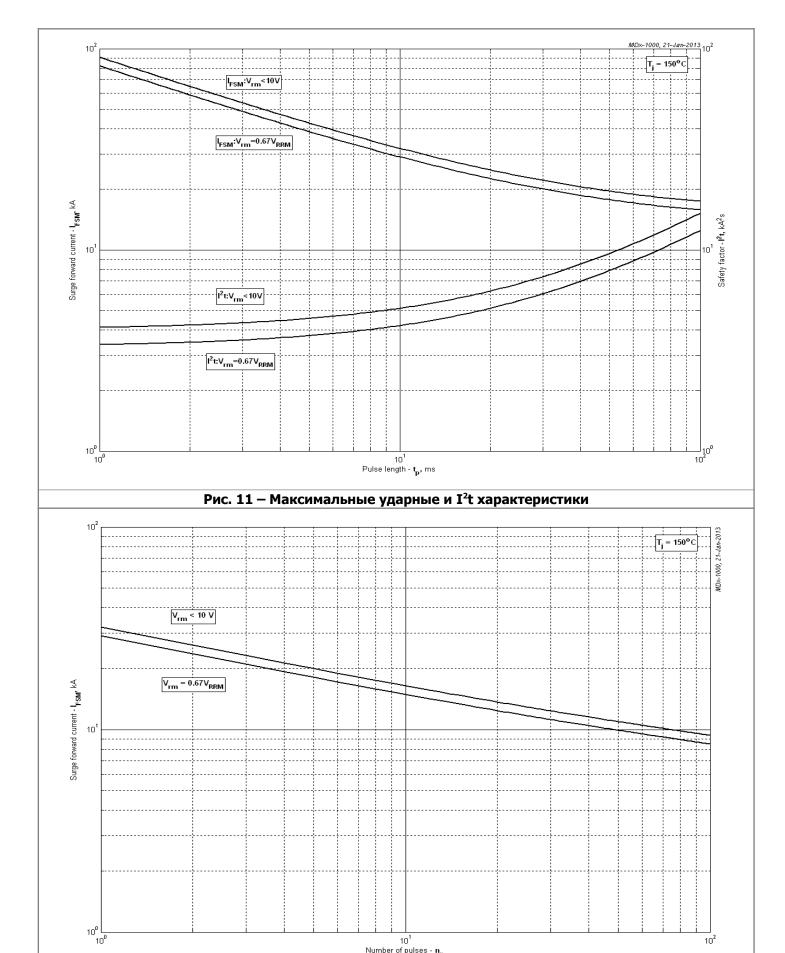


Fig 12 — Максимальные ударные характеристики

10¹ Number of pulses - **n**_p