

ПРОТОН-ЭЛЕКТРОТЕКС

Изолированное основание Корпус промышленного стандарта Упрощенная механическая конструкция, быстрая сборка Прижимная конструкция Двухпозиционный Диодный Модуль МДх-200-28-F

Средний прямой ток					200 A		
Повторяющееся импульсное обратное напряжение			U_{RRM}		20002800 B		
U _{RRM} , B	M, B 2000 22		00	24	00	2600	2800
Класс по напряжению	20	22	22 24		24 26 28		28
T _j , °C	-4 0+150						

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозначение и наименование параметра			Значение		Условия измерения	
Параме	тры в проводящем состоянии					
I_{FAV}	Максимально допустимый средний прямой ток	А	200 198	T _c =99 °C; T _c =100 °C; 180 эл. град. синус; 50 Гц		
I_{FRMS}	Действующий прямой ток	A	314	T _c =99 °C; 180 эл. град. синус; 50 Гц		
		кА	6.4 7.5	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t _p =10 мс; единичный импульс; U _R =0 B;	
I _{FSM}	Ударный ток		6.5 7.5	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p =8.3 мс; единичный импульс; U_R =0 В;	
I²t	Защитный показатель	A ² c·10 ³	200 280	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t _p =10 мс; единичный импульс; U _R =0 B;	
			170 230	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t _p =8.3 мс; единичный импульс; U _R =0 B;	
Блокир	ующие параметры					
U_{RRM}	Повторяющееся импульсное обратное напряжение	В	20002800	$T_{j \text{min}} < T_{j} < T_{j \text{max}};$ 180 эл. град. синус; 50 Гц		
U_{RSM}	Неповторяющееся импульсное обратное напряжение	В	21002900	$T_{j \text{min}} < T_{j} < T_{j \text{max}}; \ 180 \ эл. \ град. \ синус; \ единичный импульс$		
U _R	Постоянное обратное напряжение	В	0.6 [·] U _{RRM}	$T_j = T_{j \text{ max}};$		
Теплов	ые параметры					
T_{stg}	Температура хранения	°C	-40+50			
T_{j}	Температура р-п перехода	°C	-40+150			
T _{c op}	Рабочая температура корпуса	°C	-40+125			
Механи	ческие параметры					
а	Ускорение	M/C ²	50			

ХАРАКТЕРИСТИКИ

Обозначение и наименование характеристики			Значение	Условия измерения			
Характе	ристики в проводящем состоянии						
U _{FM}	Импульсное прямое напряжение, макс	В	1.40	T _j =25 °C; I _{FM} =500 A			
U _{F(TO)}	Пороговое напряжение, макс	В	0.958	$T_j = T_{j \text{ max}};$			
r _T	Динамическое сопротивление, макс	мОм	1.076	$0.5~\pi~I_{\text{FAV}} < I_{\text{T}} < 1.5~\pi~I_{\text{FAV}}$			
Блокирующие характеристики							
I_{RRM}	Повторяющийся импульсный обратный ток, макс	мА	20 2.50				
Динамические характеристики							
Qr	Заряд восстановления, макс	мкКл	1350				
t _{rr}	Время обратного восстановления, макс	мкс	25	$T_j = T_{j \text{ max}}$; $I_{\text{FM}} = I_{\text{FAV}}$; $di_{\text{R}}/dt = -10 \text{ A/MKC}$; $U_{\text{R}} = 100 \text{ B}$			
I _{rr}	Обратный ток восстановления, макс	Α	108				

Теплов	ые характеристики					
D	Тепловое сопротивление					
	р-п переход-корпус, макс					
	на модуль	°С/Вт	0.0850	190 25 525 64496 50 54		
R_{thjc}	на позицию	°С/Вт	0.1700	180 эл. град. синус; 50 Гц		
	на модуль	°С/Вт	0.0800	Постоянный ток		
	на позицию	°С/Вт	0.1600	Постоянный ток		
	Тепловое сопротивление	Тепловое сопротивление				
D	корпус-охладитель, макс					
R _{thch}	на модуль	°С/Вт	0.0300			
	на позицию	°С/Вт	0.0600			
Характе	еристики изоляции					
U_{ISOL}	Электрическая прочность изоляции	кВ	3.00	синус; 50 Гц;	t=60 c	
UISOL	электрическая прочность изоляции	KD	3.60	действующее значение	t=1 c	
Механи	ческие характеристики					
M_1	Момент затяжки основания (M6) ¹⁾	Нм	6.00	Допуск ± 15%		
M_2	Момент затяжки выводов (M6) ¹⁾	Нм	6.00	Допуск ± 15%		
m	Масса, макс	Г	350			

МАРКИРОВКА	ПРИМЕЧАНИЕ
МД 3 - 200 - 28 - F - У2 1 2 3 4 5 6 1. МД – Диодный Модуль 2. Схема включения 3. Средний прямой ток, А 4. Класс по напряжению 5. Тип корпуса (М.х) 6. Климатическое исполнение по ГОСТ 15150: У2	1) Резьба должна быть смазана

Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, АО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.

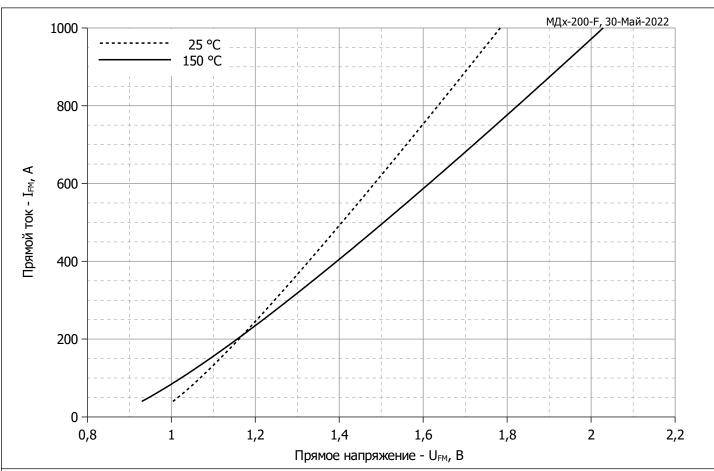


Рис. 1 – Предельная вольт-амперная характеристика

Аналитическая функция предельной вольт — амперной характеристики:

$$U_F = A + B \cdot i_F + C \cdot \ln(i_F + 1) + D \cdot \sqrt{i_F}$$

	Коэффициенты для графика				
	$T_j = 25^{\circ}C$ $T_j = T_{j \text{ max}}$				
Α	0.92504472	0.83885667			
В	0.00062831	0.00078347			
С	0.00325009	-0.00934651			
D	0.00656660	0.01489701			

Модель предельной вольт – амперной характеристики (см. Рис. 1).

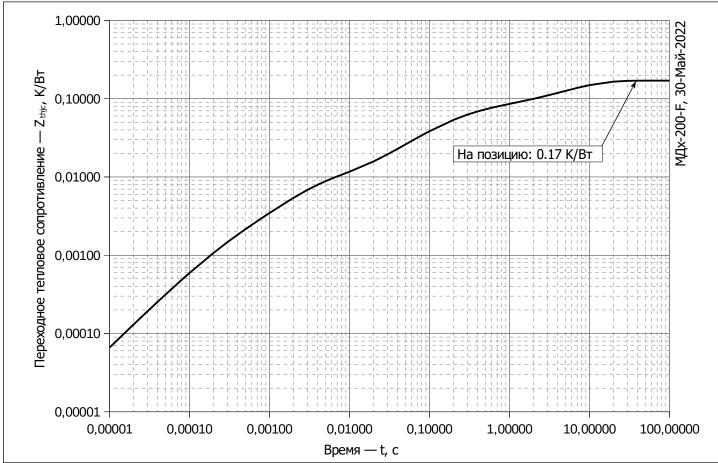


Рис. 2 — Зависимость переходного теплового сопротивления Z_{thjc} от времени t

Аналитическая зависимость переходного теплового сопротивления переход — корпус:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left(1 - e^{-\frac{t}{\tau_i}} \right)$$

Где i = 1 до n, n – число суммирующихся элементов.

t = продолжительность импульсного нагрева в секундах.

 $\mathbf{Z}_{\text{thjc}} = \text{Тепловое сопротивление за время t.}$

 \mathbf{R}_{i, τ_i} = расчетные коэффициенты, приведенные в таблице.

	i	1	2	3	4	5	6
R _i , K	W	0.0007228424	0.006639986	0.0153862565	0.0389709604	0.0142906115	0.09398934
τ _i , S		0.0002111	0.002366	0.06905	0.1909	0.6646	6.64

Модель переходного теплового сопротивления переход - корпус (см. Рис. 2)

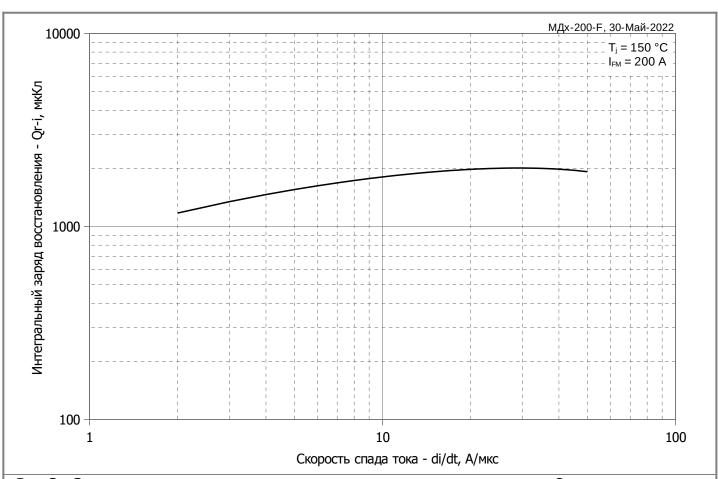


Рис. 3 — Зависимость максимального интегрального заряда восстановления Q_{r-i} от скорости спада прямого тока di_R/dt

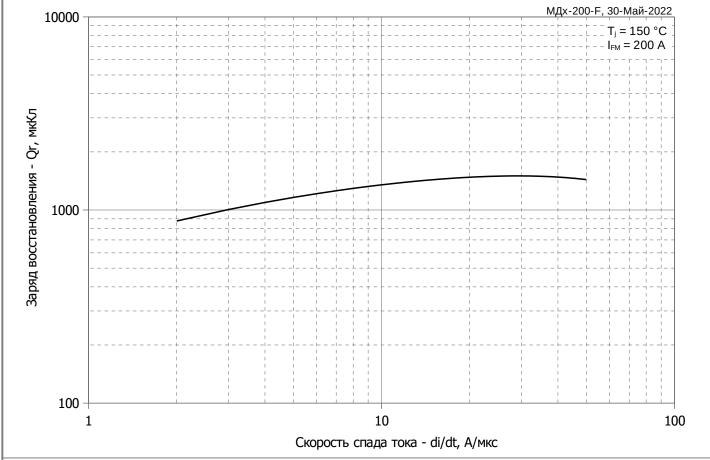


Рис. 4 — Зависимость максимального заряда восстановления Q_r от скорости спада прямого тока di_R/dt (по ГОСТ 24461, хорда 25%)

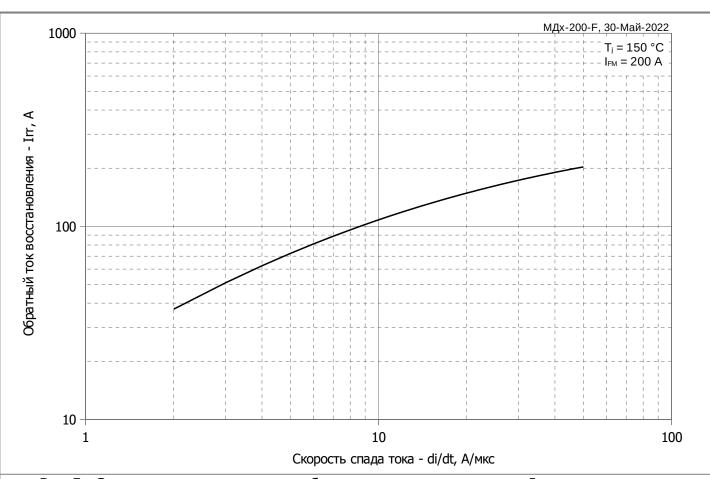


Рис. 5 — Зависимость максимального обратного тока восстановления I_{rr} от скорости спада прямого тока di_R/dt

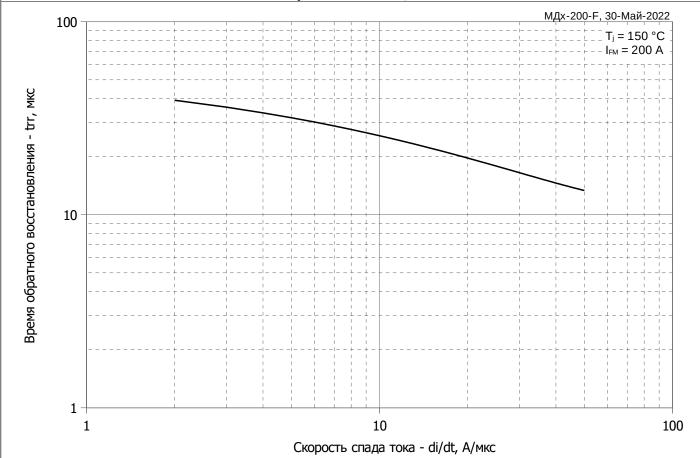


Рис. 6 — Зависимость максимального времени обратного восстановления t_{rr} от скорости спада прямого тока di_R/dt (по ГОСТ 24461, хорда 25%)

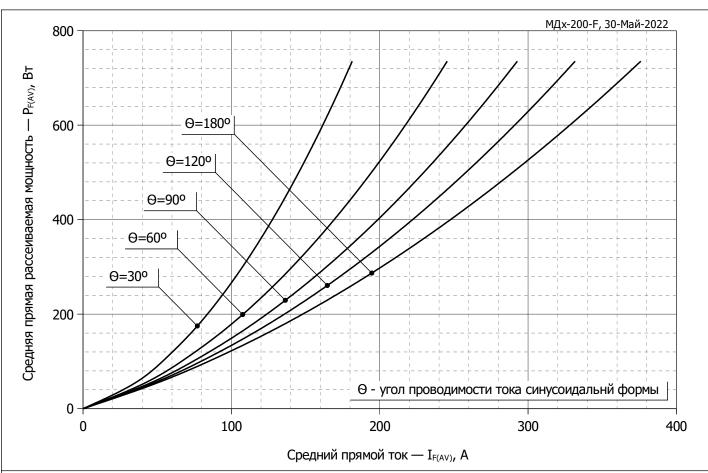


Рис. 7 - Зависимость потерь мощности P_{FAV} от среднего прямого тока I_{FAV} синусоидальной формы при различных углах проводимости (f=50 Гц)

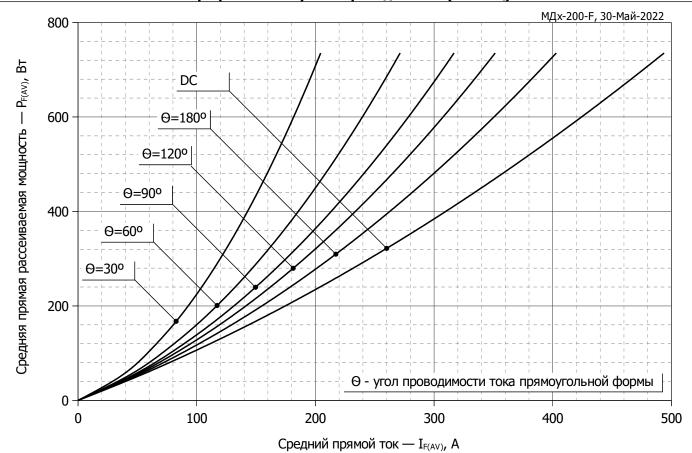


Рис. 8— Зависимость потерь мощности P_{FAV} от среднего прямого тока I_{FAV} прямоугольной формы при различных углах проводимости (f=50 Гц)

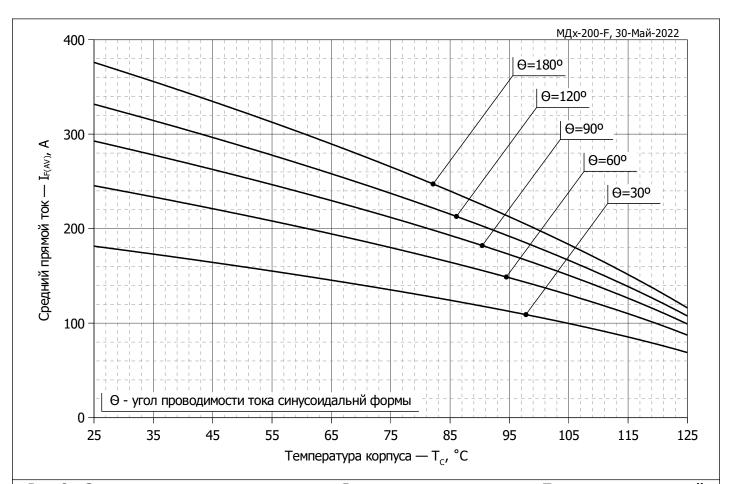


Рис. 9 — Зависимость среднего прямого тока I_{FAV} от температуры корпуса T_{C} для синусоидальной формы тока при различных углах проводимости (f=50 Гц)

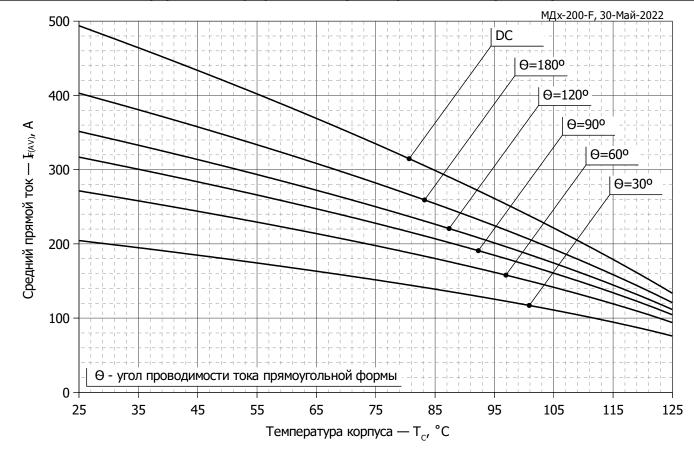


Рис. 10 - Зависимость среднего прямого тока I_{FAV} от температуры корпуса T_c для прямоугольной формы тока при различных углах проводимости (f=50 Гц)

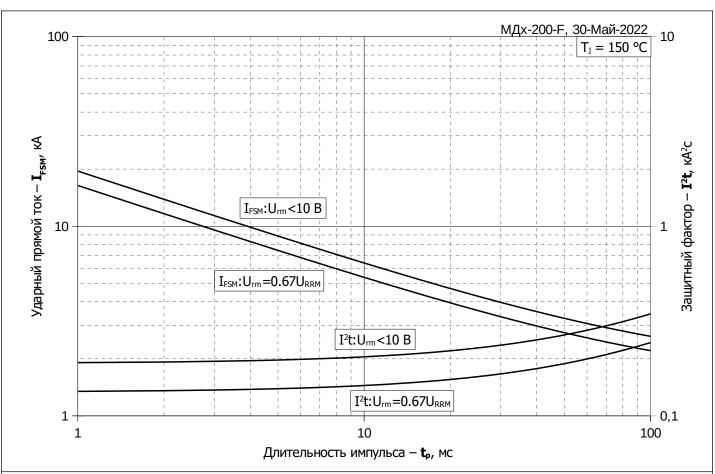


Рис. 11 — Зависимость максимальной амплитуды ударного прямого тока I_{FSM} и защитного фактора I^2t от длительности импульса t_{p}

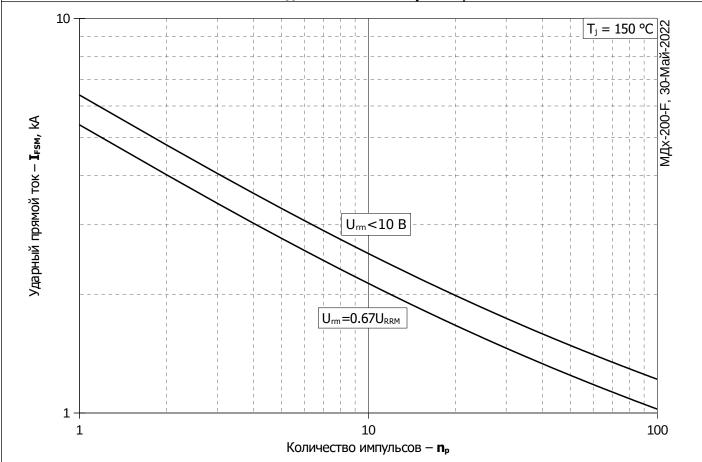


Рис. 12 — Зависимость максимальной амплитуды ударного прямого тока \mathbf{I}_{FSM} от количества импульсов \mathbf{n}_{p}