
Информационный лист на блок силовой

Трёхфазный двухуровневый инвертор

135 **kBA**

Состав блока силового

- жидкостный охладитель с установленными на него тремя модулями типа MIDA-HB17FA-450N и датчиком температуры (NTC);
- шины постоянного тока с установленными конденсаторами общей емкостью 500 мкФ;
- шины переменного трехфазного тока;
- платы драйверов для каждого модуля MIDA-HB17FA-450N;
- системная плата для взаимодействия с внешней СУ;
- датчик выходного трехфазного переменного тока;
- интерфейсный разъем 35 контактов (типа Harting);
- фильтр ЭМИ;
- элементы конструкции.

Особенности конструкции

- закрытый герметичный корпус;
- водяное охлаждение;
- подключение внешней СУ по интерфейсному разъему.

Типовые применения

 Установка на транспортные средства для питания двигателей переменного тока.

Общие характеристики

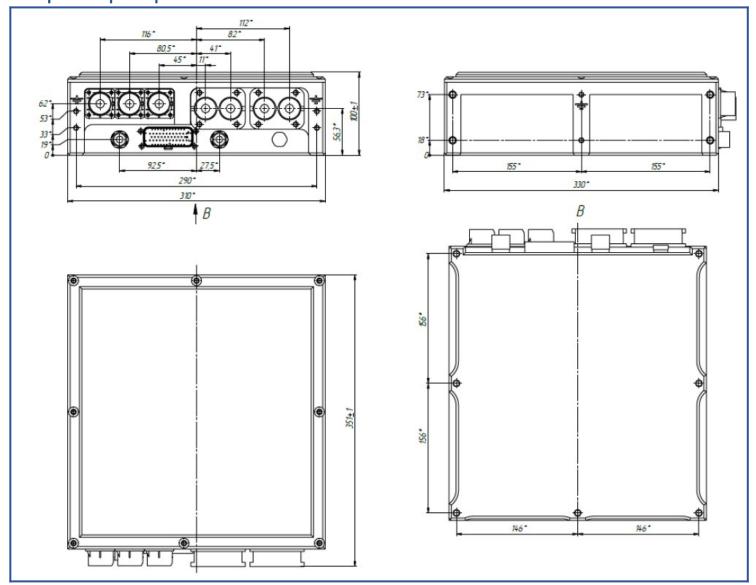
Параметр	Обозн.	Условия	Знач.	Ед.
Число фаз на выходе	n		3	
Температура эксплуатации	T _a		-40+75	°C
Температура хранения	Ts		-40+75	°C
Перепад давления теплоносителя	ΔΡ	не более	0,5	бар
Относительная влажность, без конденсации	RH	не более	95	%
Степень защиты от проникновения	IP		67	
Габариты	ШхДхВ	не более*	311×360×100	
Охлаждение		гликоль/вода (50/50)	жидкостное принудительное	
Срок службы		не менее	5	лет

Номинальные характеристики

Попоможн	Обозн.	Varanus		F-			
Параметр	0003н.	Условия	мин.	тип.	макс.	Ед.	
Выходная полная мощность	P _{out(f)}			135	195*	кВА	
Выходная активная мощность	P _{out(a)}			114	150*	кВт	
Напряжение звена постоянного тока	U _{DC}		0	750	800*	В	
Входной постоянный ток	I _{DC}			150*	260*	Α	
Линейное выходное напряжение	U _{AC(I-I)}	RMS		520		В	
Выходной фазный ток	I _{AC}	RMS		150		Α	
Частота коммутации	f _{sw}		0,5	4	8*	кГц	
Выходная частота основной гармоники	f _{out}			50		Гц	
Коэффициент мощности на выходе	cos φ			0,85			
Температура окружающей среды	Ta	не более		50		°C	
Температура охладителя	T _h			60	65*	°C	
Скорость потока теплоносителя	V			10		л/мин	

Информационный лист на блок силовой

Характеристики системы управления**

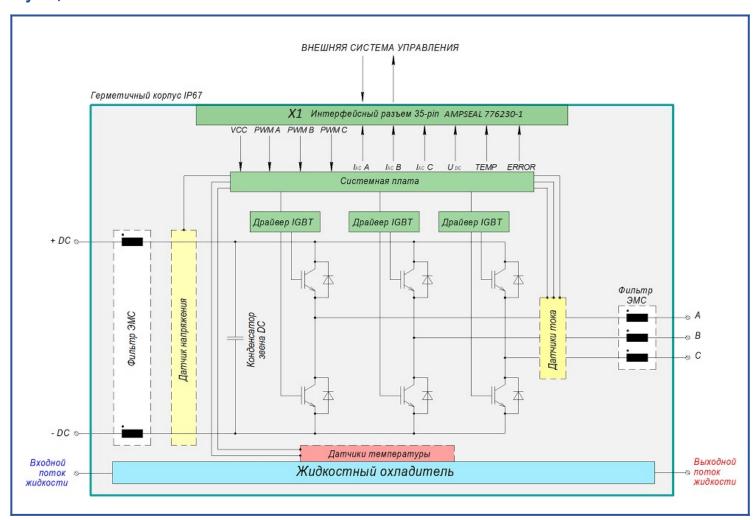

Поположн	05	V		F-		
Параметр	Обозн.	Условия	мин.	тип.	макс.	Ед.
Напряжение питания низковольтной части	Ucc		8	20	32	B _{DC}
Максимальный ток потребления низковольтной части, при Ucc = 20 В	I _{S_MAX}			1		А
Диапазон значений напряжения логической «1» входных дискретных сигналов	U _{IN_H}		0.7×U _{cc}		U _{cc} +0.3	B _{DC}
Диапазон значений напряжения логического «0» входных дискретных сигналов	$U_{IN_{L}L}$		-0.3		0.3×U _{cc}	B _{DC}
Минимальное входное сопротивление дискретных входов	R _{DIN_MIN}			4.7		кОм
Тип выходных дискретных сигналов (HALT, ERR_A0, ERR_A1, ERR_A2)	-		откр	ытый колл	ектор	
Максимальный ток выходных дискретных сигналов (HALT, ERR_A0, ERR_A1, ERR_A2)	I _{DO_MAX}			50		мА
Низкий уровень выходного напряжения для сигналов аварии (HALT, ERR_A0, ERR_A1, ERR_A2), $U_{\rm CC}$ = Min, $I_{\rm OL}$ = 50 мA	$U_{\mathtt{DO}_{L}}$				0,8	В
Ток входного сигнала высокого уровня для сигналов аварии (HALT, ERR_A0, ERR_A1, ERR_A2), $U_{\rm CC}$ = Max	I _{DIN_H}			100		мкА
Диапазон измерения токов на выходных силовых терминалах, мгновенное значение	I _{out}		-450		+450	Α
Максимальное пиковое значение тока в фазе для срабатывания защиты	I _{OUT(OC)}			450		Α
Диапазон измерения температуры	Tc		30		150	°C
Температура основания IGBT модуля для срабатывания защиты по перегреву	T _{C(OT)}			75		°C
Диапазон измерения напряжения звена постоянного тока	U _{DC}		0		1000	$B_{\mathtt{DC}}$
Значение напряжения звена постоянного тока для срабатывания защиты по превышению напряжения	U _{DC(OV)}			820		B _{DC}
Диапазон изменения напряжения на выходе, для биполярных выходов, аналоговые выходы	U _{O_LV_B}		0	±10	±12	$B_{\mathtt{DC}}$
Диапазон изменения напряжения на выходе, для униполярных выходов, аналоговые выходы	U _{o_Lv_u}		0	10	12	B _{DC}
Нагрузочная способность выходных аналоговых сигналов от каналов измерения: - токов, - температуры и напряжения DC	I _{AO}		-4 0		+4 4	мА

^{*} Максимальные перегрузочные характеристики (до 50%* по току в течение 60 секунд с последующей паузой не менее 10 минут*)

^{**} Система управления блока силового включает в себя платы драйверов и системную плату.

Информационный лист на блок силовой

Габаритные размеры:


Информационный лист на блок силовой

Назначение контактов интерфейсного разъема

Nº	Наименование	Описание
1	UCC	Плюс внешнего низковольтного ИП
2	PWR_GND	Минус внешнего низковольтного ИП
3	DC_LINC_DISCH	Резерв (нет активного разряда звена DC)
4	HALT	Обобщённый сигнал срабатывания защиты / внешний сигнал аварии
5	TEMP_GND	Температура основания IGBT (земля)
6	PWM1_TOP	ШИМ верхнего ключа фазы А
7	PWM1_BOT	ШИМ нижнего ключа фазы А
8	PWM2_TOP	ШИМ верхнего ключа фазы В
9	PWM2_BOT	ШИМ нижнего ключа фазы В
10	PWM3_TOP	ШИМ верхнего ключа фазы С
11	PWM3_BOT	ШИМ нижнего ключа фазы С
12	ERR_A0	Сигнал срабатывания защиты младший разряд А0
13	UCC	Плюс внешнего низковольтного ИП
14	PWR_GND	Минус внешнего низковольтного ИП
15	ERR/RES_GND	Обобщённый сигнал срабатывания защиты / внешний сигнал аварии (земля)
16	TEMP	Температура основания IGBT
17	Reserved	Резерв
18	PWM1_GND	ШИМ фазы А (земля)
Nº	Наименование	Описание
19	Reserved	Резерв
20	PWM2_GND	ШИМ фазы В (земля)
21	Reserved	Резерв
22	PWM3_GND	ШИМ фазы С (земля)
23	ERR_A1	Сигнал срабатывания защиты средний разряд А1
24	UCC	Плюс внешнего низковольтного ИП
25	PWR_GND	Минус внешнего низковольтного ИП
26	Reserved	Резерв
27	UDC	Напряжение звена DC
28	UDC_GND	Напряжение звена DC (земля)
29	IA	Ток фазы А
30	IA _GND	Ток фазы А (земля)
31	IB	Ток фазы В
32	IB _GND	Ток фазы В (земля)
33	IC	Ток фазы С
34	IC _GND	Ток фазы С (земля)
35	ERR_A2	Сигнал срабатывания защиты старший разряд А2

Информационный лист на блок силовой

Функциональная схема:

Руководство по маркировке

Б	И	TP	-	150	-	0.52	-	1	-	В	-	У	2	
Б														Блок силовой
	И													Инвертор
		TP												Тип применяемых СПП - транзисторы (IGBT)
				150										Рабочий ток (А)
						0.52								Рабочее напряжение (кВ)
								1						Исполнение
										В				Тип охлаждения (водяное)
												У		Климатическое исполнение
													2	Категория размещения

Информация, содержащаяся в данным документе, защищена авторским правом. В интересах улучшения качества продукта АО «Протон-Электротекс» оставляет за собой право вносить изменения в информационные листы без предварительного уведомления.