
Информационный лист IGBT модуля

IGBT модуль в стандартном корпусе 62мм

1700 B 150 A

Особенности чипов

- IGBT чип
 - o Trench FS
 - о низкое значение U_{CE(sat)}
 - о длительность КЗ 10 мкс при 150°C
 - о квадратная область RBSOA при 2xI_C
 - о низкое ЭМИ
- FRD чип
 - о быстрое и мягкое восстановление
 - о низкое падение напряжения

Особенности конструкции

- медное основание
- Al₂O₃ DBC подложки
- ультразвуковая приварка силовых выводов
- улучшенная стойкость к термоциклам
- соответствие RoHS

Типовые применения

- приводы двигателей переменного тока
- преобразователи на основе солнечных батарей
- системы кондиционирования воздуха
- преобразователи высокой мощности и ИБП

Предельно допустимые значения параметров

Параметр	Обозн.	Условия	Знач.	Ед.
IGBT				
Напряжение коллектор-эмиттер	U _{CES}	$U_{GE} = 0$.	1700	В
Максимально допустимый постоянный ток	I _{C 25}	$T_{vj \text{ (max)}} = 175^{\circ}\text{C}; T_{c} = 25^{\circ}\text{C}.$	288	Α
коллектора	I _{C 80}	$T_{vj (max)} = 175$ °C; $T_c = 80$ °C.	150	Α
Максимальный повторяющийся импульсный ток коллектора*1	I _{CRM}	$I_{CRM} = 2 \times I_{C \text{ nom}}; t_p = 1 \text{ MC}.$	300	А
Длительность импульсного тока короткого	t _{psc}	T_{vj} = 25°C; U_{GE} = ±15 B; U_{CE} = 700 B; $R_{G \text{ on}}$ = $R_{G \text{ off}}$ = 2.2 OM; I_{Cmax} < 930 A.	10	MICO
замыкания		T_{vj} = 150°C; U_{GE} = ±15 B; U_{CE} = 700 B; $R_{G \text{ on}}$ = $R_{G \text{ off}}$ = 2.2 OM; I_{Cmax} < 800 A.	10	МКС
Напряжение затвор-эмиттер	U _{GES}		±20	В
Рабочая температура перехода	T _{vj (op)}		-40+150	°C
Диод чоппера\Обратно-параллельный диод.				
Повторяющееся импульсное обратное напряжение	U _{RRM}	$U_{GE} = 0 B.$	1700	В
Moroumoni no nonvetimi iŭ noetoguju iŭ nognoŭ tok	I _{F 25}	$T_{vj \text{ (max)}} = 175^{\circ}\text{C}; T_{c} = 25^{\circ}\text{C}.$	288	Α
Максимально допустимый постоянный прямой ток	I _{F 80}	$T_{vj \text{ (max)}} = 175^{\circ}\text{C}; T_{c} = 80^{\circ}\text{C}.$	150	Α
Повторяющийся прямой импульсный ток ^{*1}	I _{FRM}	$I_{FRM} = 2 \times I_{F \text{ nom}}; t_p = 1 \text{ MC}.$	300	Α
Рабочая температура перехода	T _{vj (op)}		-40+150	°C
Модуль				
Температура хранения	T _{stg}		-40+50	°C
Напряжение пробоя изоляции	U _{isol}	AC sin 50 Гц; t = 1 мин.	4000	В

¹ Длительность импульса и частота повторения должна быть такой, чтобы температура перехода не превышала Т_{уі} тах.

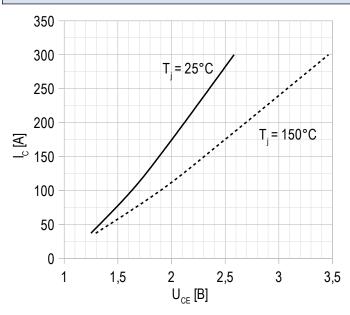
Информационный лист IGBT модуля

Характеристики

Попомото	Обозн. Условия				E-		
Параметр	0003н.	Условия	мин.	тип.	макс.	Ед.	
IGBT							
Напряжение насыщения	11	$U_{GE} = +15 \text{ B}; I_{C} = 150 \text{ A};$	T _{vj} = 25°C	1.70	1.90	2.10	В
коллектор-эмиттер	U _{CEsat}	t _u = 1000 мкс.	T _{vj} = 150°C	2.00	2.30	2.60	В
Пороговое напряжение затвор-эмиттер	U _{GE(th)}	$I_C = 6 \text{ mA}; U_{CE} = U_{GE}; T_{vj} = t_u = 2 \text{ mc}.$	4.90	5.50	6.10	В	
Ток утечки коллектор-эмиттер	I _{CES}	U_{CE} = 1700 B; t_u = 50 MC; U_{GE} = 0.	T _{vj} = 25°C T _{vj} = 150°C	-	14.00 5.00	100 15.00	мкА мА
Ток утечки затвор-эмиттер	I _{GES}	$U_{CE} = 0$; $U_{GE} = \pm 20$ B; T_{vj} $t_u = 30$ Mc.	-	17.00	100	нА	
Входная ёмкость	Cies	U _{CE} = 25 B; U _{GE} = 0 B;	-	17.20	-	нФ	
Обратная передаточная ёмкость	Cres	f = 1 MΓμ; T _{vi} = 25°C.			0.50	_	нФ
·		I _C = 150 A; U _{CE} = 920 B;			0.00		
Заряд затвора	Q _G	U _{GE} = -15+15 B.	-	-	1650	нКл	
Встроенный резистор затвора	R _{Gint}	T _{vj} = 25°C.		-	4.30	-	Ом
Время задержки включения	t _{d(on)}		T _{vj} = 25°C	171	215	259	нс
	-4(011)		T _{vj} = 150°C	195	231	267	
Время нарастания тока коллектора	t _{ri}		T _{vj} = 25°C	40	50	60	нс
h. there is the	-11	U _{CE} = 920 B;	T _{vj} = 150°C	46	57	68	
Энергия потерь при включении	E _{on}	U _{GE} = ±15 B;	T _{vj} = 25°C	16.5	26.5	36.5	мДж
	Lon	$I_{C \text{ max}} = 150 \text{ A};$	T _{vj} = 150°C	28.5	43.0	57.5	
Время задержки выключения	t _{d(off)}	R _G = 2.2 Om;	T _{vj} = 25°C	258	302	346	нс
эрония общориная запаче юния		L _s = 56 нГн.	T _{vj} = 150°C	370	515	660	
Время спада тока коллектора	t _{fi}		$T_{vj} = 25^{\circ}C$	470	585	700	нс
эроми опада тока коллоктора			T _{vj} = 150°C	585	725	865	110
Энергия потерь при выключении	E _{off}		T _{vj} = 25°C T _{vj} = 150°C	26.0	33.0	40.0	мДж
			38.0	49.0	60.0		
Пороговое напряжение коллектор-эмиттер	U _{CE0}	U _{GE} = +15 B; T _{vj} = 150°C; I _{CE1} = 37 A; I _{CE2} = 150 A;	0.92	0.96	1.00	В	
Динамическое сопротивление	r _{CE0}	t _u = 1000 мкс.	8.50	8.94	9.38	мОм	
Тепловое сопротивление	D	DC; I _{CE} = 150±10 A; I _{test} = 1.0 A;				0.140	К/Вт
переход-корпус	R _{th(j-c)}	U _{GE} = +15 B.		-	-	0.140	K/BT
Диод чоппера\Обратно-паралле	льный д	иод.					
	U _F	I _F = 150 A;	T _{vi} = 25°C	1.50	1.80	2.10	В
Постоянное прямое напряжение		$U_{GE} = 0$; $t_u = 1000$ мкс.	T _{vi} = 150°C	1.65	1.90	2.15	В
D	,	·	T _{vi} = 25°C	257	350	443	HC
Время обратного восстановления	t _{rr}		T _{vj} = 150°C	485	665	845	HC
		U _{GE} = ±15 B;	T _{vi} = 25°C	85	130	175	A
Импульсный обратный ток	I _{RM}	U _{CE} = 920 B;	T _{vi} = 150°C	95	150	205	A
•	_	$I_{C \text{ max}} = 150 \text{ A};$	T _{vi} = 25°C	14.5	22.5	30.5	мкКл
Заряд восстановления	Q _r	$R_{G \text{ on}} = 2.2 \text{ Om};$	T _{vi} = 150°C	32.5	46.5	60.5	мкКл
Энергия потерь при обратном	E _{rec}	L _s = 56 нГн.	T _{vi} = 25°C	9.0	16.0	23.0	мДж
восстановлении			T _{vi} = 150°C	22.0	33.0	44.0	мДж
Пороговое напряжение	U _(T0)	T _{vi} = 150°C; U _{GE} = 0; I _{F1} =	0.82	0.87	0.92	В	
Динамическое сопротивление	r _T	$I_{F2} = 150 \text{ A}; t_u = 1000 \text{ MKG}$		5.95	6.68	7.41	мОм
Тепловое сопротивление		DC; I _{CE} = 120±10 A; I _{test} =	3.00	3.00			
переход-корпус	R _{th(JC-D)}	$U_{GE} = +15 \text{ B}.$,	-	-	0.160	К/Вт

Информационный лист IGBT модуля

Модуль								
CORPOTABRIOLINO DI IDOROD	R_{Pxy}	T _{vj} = 25°C.	R _{P12}	-	0.28	0.50	мОм	
Сопротивление выводов	ПРху		R _{P13}	-	0.38	0.50	MOM	
Паразитная индуктивность модуля	1_			_	22	_	нГн	
между силовыми выводами	LPce			_	22	_	піп	
Тепловое сопротивление корпус-	R _{thCH}	ппа молупа		_	0.02	0.04	К/Вт	
охладитель	TthCH	для модуля		_	0.02	0.04	IVDI	
Момент затягивания винтов корпуса	Ms	к охладителю М6		3	-	5	Н*м	
Момент затягивания на силовых	Mt	к клеммам М6		2.25	2.50	2.75	Н*м	
выводах	IVIt	V VIICINIINIAINI INIO		2.20	2.00	2.13	I I IVI	
Bec	W			-	318	340	Γ	


[&]quot; - " — данные будут уточняться по мере набора статистики и проведения дополнительных испытаний.

Примечания:

- Рабочая температура корпуса и изоляционных материалов не должна превышать T_c = 125°C макс;
- Рекомендуемая рабочая температура кристалла T_{vj (op)} = -40...+150°C.

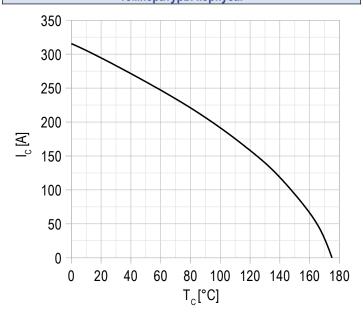
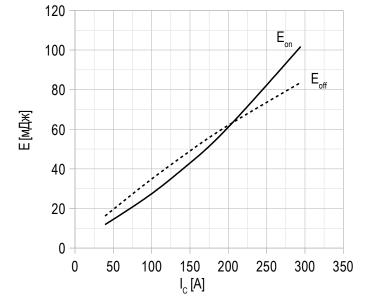

Информационный лист IGBT модуля

Рисунок 1 – типичная выходная характеристика, IGBT.

 $U_{GE} = +15 B.$


Рисунок 2 – максимальная зависимость тока коллектора от температуры корпуса.

Постоянный ток; $U_{GE} = +15 B$;

 $T_{vj (max)} = 175$ °C.

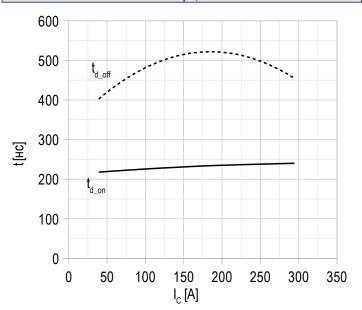
Рисунок 3 – типичная энергия переключения от тока коллектора, IGBT.

 U_{CE} = 920 B; U_{GE} = ±15 B; R_{G} = 2.2 OM; L_{s} = 56 H Γ H; $T_{vi\,(max)}$ = 150°C.

Рисунок 4 – типичная энергия переключения от сопротивления в затворе, IGBT.

 $U_{CE} = 920 B;$

 $U_{GE} = \pm 15 B;$


 $I_{C max} = 150 A;$

 $L_{\rm s}$ = 56 нГн;

 $T_{vi \, (max)} = 150$ °C.

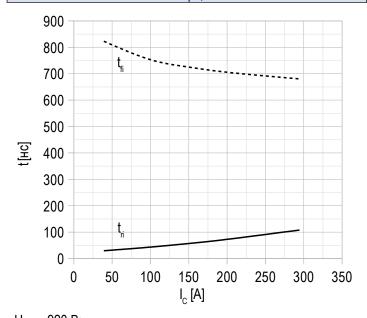

Информационный лист IGBT модуля

Рисунок 5 – типичное время переключения от тока коллектора, IGBT.

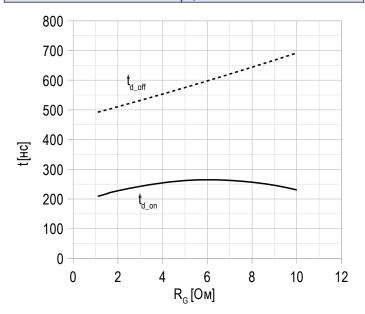

 $U_{CE} = 920 \text{ B};$ $U_{GE} = \pm 15 \text{ B};$ $R_{G} = 2.2 \text{ Om};$ $L_{s} = 56 \text{ hFH};$ $T_{vi \text{ (max)}} = 150 ^{\circ}\text{C}.$

Рисунок 7 – типичное время переключения от тока коллектора, IGBT.

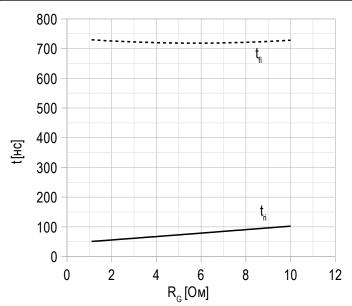
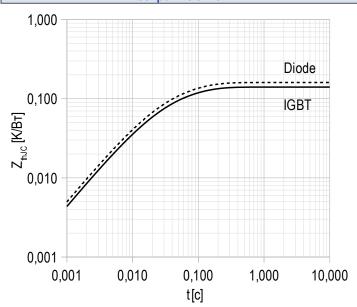

$$\begin{split} &U_{CE} = 920 \text{ B;} \\ &U_{GE} = \pm 15 \text{ B;} \\ &R_G = 2.2 \text{ OM;} \\ &L_s = 56 \text{ H}\Gamma\text{H.} \\ &T_{vj \text{ (max)}} = 150 ^{\circ}\text{C.} \end{split}$$

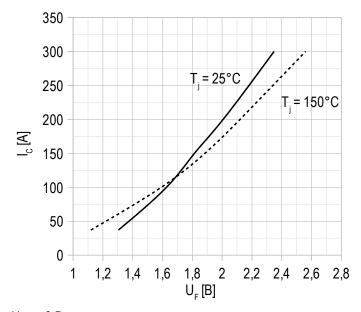
Рисунок 6 – типичное время переключения от сопротивления в затворе, IGBT.

 $U_{CE} = 920 \text{ B};$ $U_{GE} = \pm 15 \text{ B};$ $I_{C \text{ max}} = 150 \text{ A};$ $L_s = 56 \text{ HFH};$ $T_{vi \text{ (max)}} = 150 ^{\circ}\text{C}.$


Рисунок 8 – типичное время переключения от сопротивления в затворе, IGBT.

 $U_{CE} = 920 \text{ B};$ $U_{GE} = \pm 15 \text{ B};$ $I_{C \text{ max}} = 150 \text{ A};$ $L_s = 56 \text{ H}\Gamma\text{H}.$ $T_{vj \text{ (max)}} = 150 ^{\circ}\text{C}.$

Информационный лист IGBT модуля


Рисунок 9 – максимальное переходное тепловое сопротивление.

Единичный импульс;

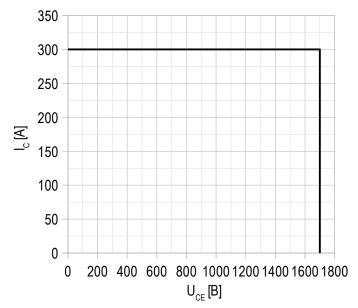
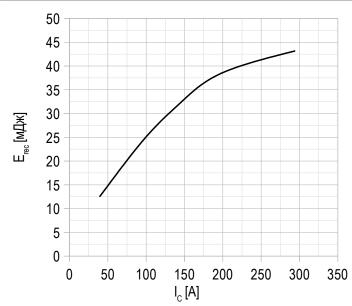

$U_{GE} = +15 B.$

Рисунок 11 – типичная прямая характеристика, FRD.

 $U_{GE} = 0 B$.

Рисунок 10 - область безопасной работы при выключении.

 $U_{CE max} = 1700 B;$


 $U_{GE} = \pm 15 B$;

 $I_{C \text{ max}} = 2*I_{C \text{ nom}};$

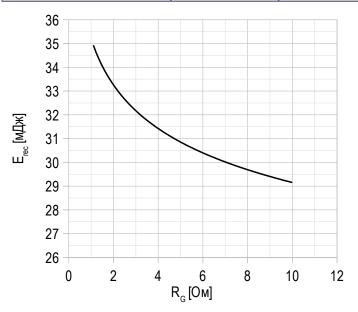
 $R_G = 2.2 O_M;$

 L_s = 56 нГн.

Рисунок 12 – типичная энергия рассеиваемая при восстановлении от тока коллектора, FRD.

 $U_{GE} = \pm 15 B$;

 $U_{CE} = 920 B;$


 $L_{s} = 56 \ н\Gamma н;$

 $R_{G \text{ on}} = 2.2 \text{ Om};$

 $T_{vj \, (max)} = 150$ °C.

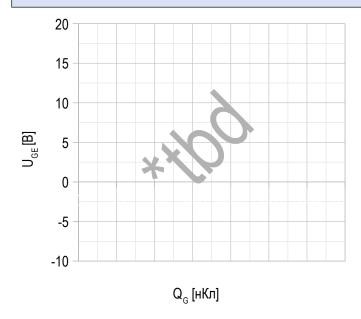

Информационный лист IGBT модуля

Рисунок 13 – типичная энергия рассеиваемая при восстановлении от сопротивления в затворе, FRD.

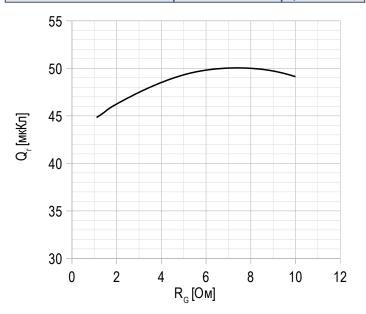

 $U_{GE} = \pm 15 \text{ B};$ $U_{CE} = 920 \text{ B};$ $I_{C \text{ max}} = 150 \text{ A};$ $L_s = 56 \text{ H}\Gamma\text{H};$ $T_{vi \text{ (max)}} = 150 ^{\circ}\text{C}.$

Рисунок 15 – типичная характеристика заряда затвора.

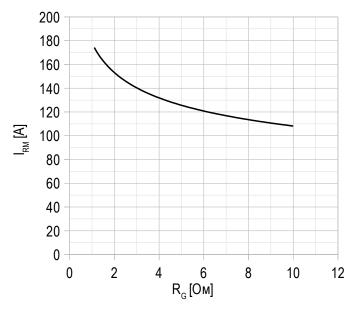
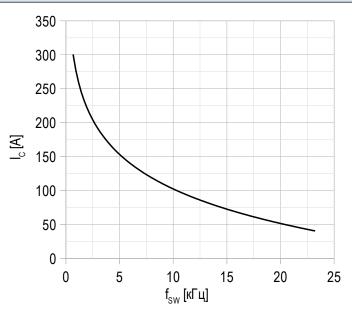

* tbd - данные будут уточняться по мере набора статистики и проведения дополнительных испытаний.

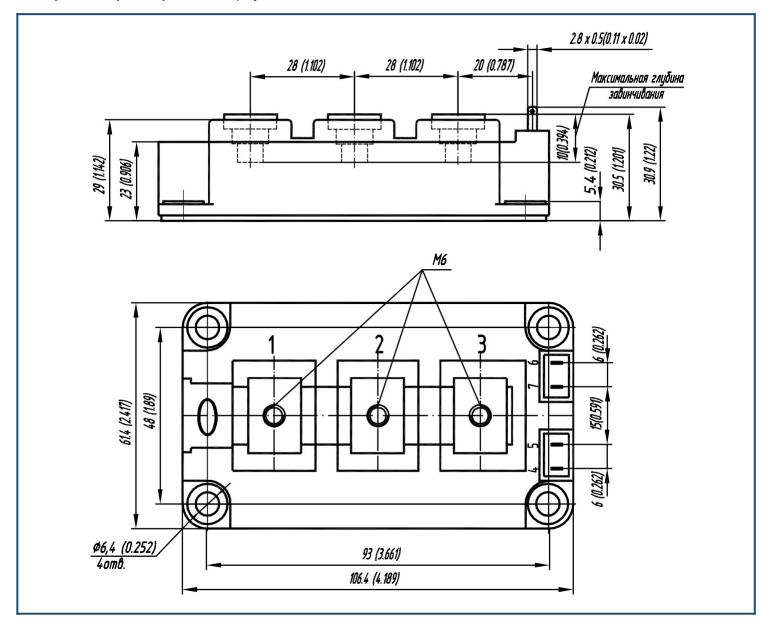
Рисунок 14 – типичная зависимость заряда обратного восстановления от сопротивления в затворе, FRD.

 $U_{GE} = \pm 15 \text{ B};$ $U_{CE} = 920 \text{ B};$ $I_{C \text{ max}} = 150 \text{ A};$ $L_s = 56 \text{ HFH};$ $T_{vi \text{ (max)}} = 150 ^{\circ}\text{C}.$


Рисунок 16 – типичная зависимость тока обратного восстановления от сопротивления в затворе, FRD.

 U_{CE} = 920 B; U_{GE} = ±15 B; L_{s} = 56 H Γ H. $T_{vi \, (max)}$ = 150°C.

Информационный лист IGBT модуля


Рисунок 17 – максимальная зависимость тока коллектора от частоты.

Скважность 50%; U_{CE} = 920 B; T_{c} = 80 °C; $T_{vj\;(max)}$ = 175 °C.

ИПАА-ПВІ/ЗА-ІЗUN Информационный лист IGBT модуля

Габаритные размеры: тип корпуса — АА

Руководство по маркировке

MIAA	-	НВ	17	SA	-	150	N	
MIAA								Тип корпуса IGBT модуля: AA
		НВ						2 ключа в схеме полу-мост
			17					Номинальное напряжение (U _{CE} /100)
				SA				IGBT+FRD модификация чипсета
						150		Средний ток
							N	Климатическое исполнение: умеренный климат

Информация, содержащаяся в данным документе, защищена авторским правом. В интересах улучшения качества продукта АО «Протон-Электротекс» оставляет за собой право вносить изменения в информационные листы без предварительного уведомления.