
Информационный лист IGBT модуля

IGBT модуль в стандартном корпусе 34мм

1700 B 100 A

Особенности чипов

- IGBT чип
 - Trench FS
 - о низкое значение U_{CE(sat)}
 - о длительность КЗ 10 мкс при 150°С
 - о квадратная область RBSOA при 2xIc
 - о низкое ЭМИ
- FRD чип
 - о быстрое и мягкое восстановление
 - о низкое падение напряжения

Особенности конструкции

- медное основание
- Al₂O₃ DBC подложки
- ультразвуковая приварка силовых выводов
- улучшенная стойкость к термоциклам
- соответствие RoHS

Типовые применения

- приводы двигателей переменного тока
- преобразователи на основе солнечных батарей
- системы кондиционирования воздуха
- преобразователи высокой мощности и ИБП

Предельно допустимые значения параметров

Параметр	Обозн.	Условия	Знач.	Ед.
IGBT				
Напряжение коллектор-эмиттер	U _{CES}	U _{GE} = 0.	1700	В
Максимально допустимый постоянный ток	I _{C 25}	$T_{vj (max)} = 175^{\circ}C; T_{c} = 25^{\circ}C.$	220	Α
коллектора	I _{C 80}	$T_{vj (max)} = 175^{\circ}C; T_c = 80^{\circ}C.$	100	Α
Максимальный повторяющийся импульсный ток коллектора*1	I _{CRM}	$I_{CRM} = 2 \text{ x } I_{C \text{ nom}}; t_p = 1 \text{ MC}.$	200	Α
Длительность импульсного тока короткого замыкания	t _{psc}	T_{vj} = 25°C; U_{GE} = ±15 B; U_{CE} = 1000 B; $R_{G \text{ on}}$ = $R_{G \text{ off}}$ = 2.0 Om.	10	мкс
длительность импульсного тока короткого замыкания		T_{vj} = 150°C; U_{GE} =±15 B; U_{CE} = 1000 B; $R_{G \text{ on}}$ = $R_{G \text{ off}}$ = 2.0 Om.	10	IVING
Напряжение затвор-эмиттер	U _{GES}		±20	В
Рабочая температура перехода	T _{vj (op)}		-40+150	°C
Диод чоппера\Обратно-параллельный диод.				
Повторяющееся импульсное обратное напряжение	U_RRM	U _{GE} = 0 B.	1700	В
Максимально допустимый постоянный прямой ток	I _{F 25}	$T_{vj (max)} = 175^{\circ}C; T_{c} = 25^{\circ}C.$	114	Α
•	I _{F 80}	$T_{vj (max)} = 175^{\circ}C; T_c = 80^{\circ}C.$	85	Α
Повторяющийся прямой импульсный ток ^{*1}	I_{FRM}	$I_{FRM} = 2 \times I_{F \text{ nom}}; t_p = 1 \text{ MC}.$	200	Α
Рабочая температура перехода	T _{vj (op)}		-40+150	°C
Модуль				
Температура хранения	T _{stg}		-40+50	°C
Напряжение пробоя изоляции	U _{isol}	AC sin 50 Гц; t = 1 мин.	4000	В

^{*1} Длительность импульса и частота повторения должна быть такой, чтобы температура перехода не превышала T_{vi} max.

Информационный лист IGBT модуля

Характеристики

Папацотп	Обозн.	Vononua	Vozonus		Знач.		
Параметр	Обозн.	Условия		мин.	тип.	макс.	Ед.
IGBT							
Напряжение насыщения	11	$U_{GE} = +15 \text{ B}; I_{C} = 100 \text{ A};$	T _{vj} = 25°C	1.45	1.75	2.05	В
коллектор-эмиттер	U _{CEsat}	t _u = 1000 мкс.	T _{vj} = 150°C	1.75	2.10	2.45	В
Пороговое напряжение затвор-эмиттер	U _{GE(th)}	$I_C = 4$ mA; $U_{CE} = U_{GE}$; $T_{vj} = 25$ °C; $t_u = 2$ mc.		4.60	5.40	6.20	В
Ток утечки коллектор-эмиттер	I _{CES}	U_{CE} = 1700 B; t_u = 50 мс; U_{GE} = 0.	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$	-	11.0 2.00	100 7.00	мкА мА
Ток утечки затвор-эмиттер	I _{GES}	U_{CE} = 0; U_{GE} = ±20 B; T_{vj} t_u = 30 мс.	= 25°C;	-	10.0	100	нА
Входная ёмкость	Cies	$U_{CE} = 10 \text{ B}; U_{GE} = 0 \text{ B};$		-	13.60	-	нФ
Обратная передаточная ёмкость	Cres	f = 1 МГц; Т _{vj} = 25°С.		-	0.40	-	нФ
Заряд затвора	Q_G	$I_C = 100 \text{ A}; \ U_{CE} = 920 \text{ B}; \ U_{GE} = -15+15 \text{ B}.$		-	750	850	нКл
Встроенный резистор затвора	R _{Gint}	$T_{vj} = 25^{\circ}C$.		-	5.10	-	Ом
Время задержки включения	t _{d(on)}		T _{vj} = 25°C	149	176	203	нс
Броми обдорими віопологии	ra(on)		T _{vj} = 150°C	171	200	229	110
Время нарастания тока коллектора	t _{ri}	U _{CE} = 920 B;	T _{vj} = 25°C	27	43	59	нс
Demini napadranini roka koninektopa	q ₁	U _{GE} = ±15 B;	T _{vj} = 150°C	37	48	59	
Энергия потерь при включении	E _{on}	$I_{C \text{ max}} = 100 \text{ A};$	T _{vj} = 25°C	10.0	14	18.0	мДж
Chiephini heropa hpir aldhe lehini	Lon	$R_{G \text{ on}} = 2.2 \text{ OM};$	$R_0 = 2.2 \text{OM}$		22.0	29.0	
Время задержки выключения	t _{d(off)}	L _s = 56 нГн.	T _{vj} = 25°C	203	250	297	нс
	-4(011)		T _{vj} = 150°C	234	370	506	
Время спада тока коллектора	t _{fi}		T _{vj} = 25°C	472	608	744	
•			T _{vj} = 150°C	671	844	1017	
Энергия потерь при выключении	E _{off}		T _{vj} = 25°C T _{vj} = 150°C	15.0 25.0	22.0 33.0	29.0 41.0	мДж
Пороговое напряжение		U _{GE} = +15 B; T _{vi} = 150°C	-				_
коллектор-эмиттер	U _{CE0}	$I_{CE1} = 25 \text{ A}; I_{CE2} = 100 \text{ A};$,	0.88	0.95	1.02	В
Динамическое сопротивление	r _{CE0}	t _u = 1000 мкс.		10.76	11.56	12.36	мОм
Тепловое сопротивление		DC; I _{CE} = 100±10 A; I _{test} = 0.5 A;			0.404	0.404	IZ/D-
переход-корпус	R _{th(j-c)}	U _{GE} = +15 B.	ŕ	-	0.164	0.181	К/Вт
Диод чоппера\Обратно-паралле	эльный д	иод.					
		I _F = 100 A;	T _{vi} = 25°C	1.65	1.95	2.25	В
Постоянное прямое напряжение	U _F	$U_{GE} = 0$; $t_u = 1000$ мкс.	T _{vj} = 150°C	1.75	2.10	2.45	В
Droug of parties and a second	1		T _{vj} = 25°C	221	274	327	нс
Время обратного восстановления	t _{rr}	$U_{GE} = \pm 15 B;$	T _{vj} = 150°C	313	438	563	нс
Импульсный обратный ток	l _n	U _{CE} = 920 B;	T _{vj} = 25°C	55	85	115	Α
инитульсный ооратный ток	I _{RM}	$I_{C \text{ max}} = 100 \text{ A};$	T _{vj} = 150°C	60	95	130	Α
Заряд восстановления	Qr	$R_{G \text{ on}}$ = 2.2 Ом; L_s = 56 нГн.	T _{vj} = 25°C T _{vj} = 150°C	5.0 13.0	11.0 21.0	17.0 29.0	мкКл мкКл
Энергия потерь при обратном	_		T _{vi} = 25°C	4.0	8.0	12.0	мДж
восстановлении	E _{rec}		T _{vi} = 150°C	10.0	16.0	22.0	мДж
Пороговое напряжение	U _(T0)	T _{vi} = 150°C; U _{GE} = 0; I _{CE1}	· ·	0.91	0.94	0.97	В
Динамическое сопротивление	r _T	$I_{CE2} = 100 \text{ A}; t_u = 1000 \text{ M}$		11.21	11.87	12.53	мОм
Тепловое сопротивление	_	DC; I _{CE} = 80±10 A; I _{test} =					
переход-корпус	R _{th(JC-D)}	U _{GE} = +15 B.	,	-	0.476	0.542	К/Вт

Информационный лист IGBT модуля

Модуль							
Corporado de la la corporada	D	T _{vj} = 25°C.	R _{P12}	-	0.47	0.50	мОм
Сопротивление выводов	R_{Pxy}		R _{P13}	-	0.66	0.66	
Паразитная индуктивность модуля	L_Pce			_	27	_	нГн
между силовыми выводами	_rce			21			
Тепловое сопротивление корпус-	R _{thCH}	для модуля		_	0.02	0.04	К/Вт
охладитель	TUNCH						
Момент затягивания винтов	Ms	к охладителю M6		3.00	-	5.00	Н*м
корпуса	IVIS			3.00			
Момент затягивания на силовых	M _t	к клеммам М5		1.80	2.00	2.20	Н*м
выводах	IVIt			1.00	2.00	2.20	I I M
Bec	W			-	153	170	Г

[&]quot; - " — данные будут уточняться по мере набора статистики и проведения дополнительных испытаний.

Примечания:

- Рабочая температура корпуса и изоляционных материалов не должна превышать T_c = 125°C макс;
- Рекомендуемая рабочая температура кристалла T_{vj op} = 40...+150°C.

Информационный лист IGBT модуля

Рисунок 1 – типичная выходная характеристика, IGBT.

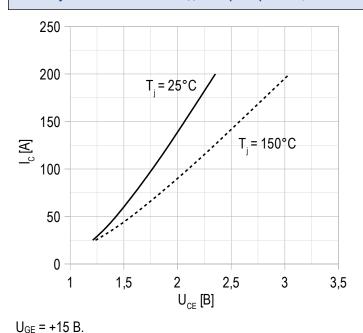
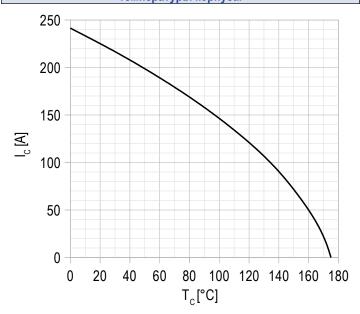
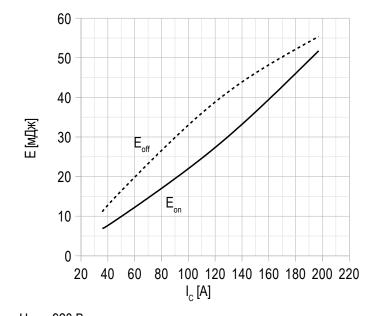




Рисунок 2 – максимальная зависимость тока коллектора от температуры корпуса.

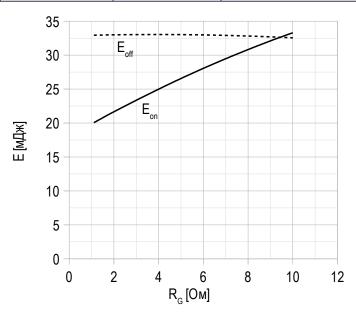
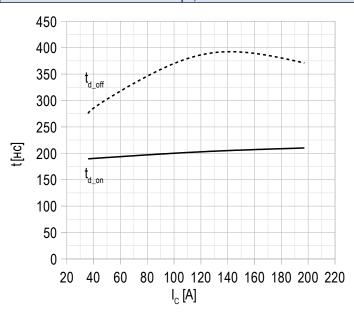

Постоянный ток; $U_{GE} = +15 B;$ $T_{vi (max)} = 175 ^{\circ}C.$

Рисунок 3 – типичная энергия переключения от тока коллектора, IGBT.

 U_{CE} = 920 B; U_{GE} = ±15 B; R_{G} = 2.2 OM; L_{s} = 56 H Γ H; $T_{v_{i} \, (max)}$ = 150 $^{\circ}$ C.

Рисунок 4 – типичная энергия переключения от сопротивления в затворе, IGBT.



 $U_{CE} = 920 \text{ B};$ $U_{GE} = \pm 15 \text{ B};$ $I_{C \text{ max}} = 100 \text{ A};$ $L_s = 56 \text{ H}\Gamma\text{H};$ $T_{vj \text{ (max)}} = 150 ^{\circ}\text{C}.$

Информационный лист IGBT модуля

Рисунок 5 – типичное время переключения от тока коллектора, IGBT.

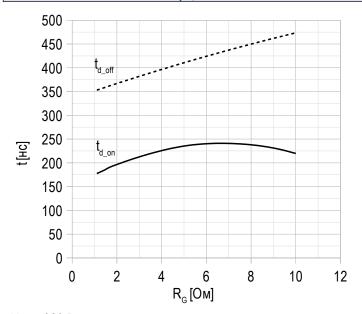

 $U_{CE} = 920 \text{ B};$ $U_{GE} = \pm 15 \text{ B};$ $R_{G} = 2.2 \text{ OM};$ $L_{s} = 56 \text{ h}\Gamma\text{H};$ $T_{vj \text{ (max)}} = 150^{\circ}\text{C}.$

Рисунок 7 – типичное время переключения от тока коллектора, IGBT.

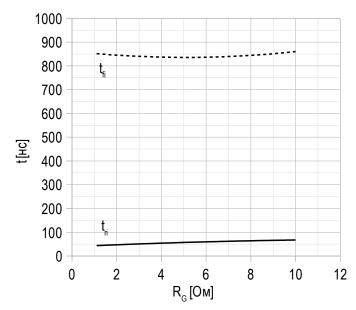
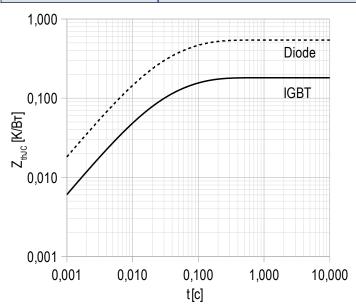

 $U_{CE} = 920 \text{ B};$ $U_{GE} = \pm 15 \text{ B};$ $R_G = 2.2 \text{ OM};$ $L_s = 56 \text{ H}\Gamma\text{H}.$ $T_{vj \text{ (max)}} = 150 ^{\circ}\text{C}.$

Рисунок 6 – типичное время переключения от сопротивления в затворе, IGBT.

 $U_{CE} = 920 \text{ B};$ $U_{GE} = \pm 15 \text{ B};$ $I_{C \text{ max}} = 100 \text{ A};$ $L_s = 56 \text{ HFH};$ $T_{\text{Vi} \text{ (max)}} = 150 ^{\circ}\text{C}.$

Рисунок 8 – типичное время переключения от сопротивления в затворе, IGBT.



 $U_{CE} = 920 \text{ B};$ $U_{GE} = \pm 15 \text{ B};$ $I_{C \text{ max}} = 100 \text{ A};$ $L_s = 56 \text{ H}\Gamma\text{H}.$ $T_{vj \text{ (max)}} = 150 ^{\circ}\text{C}.$

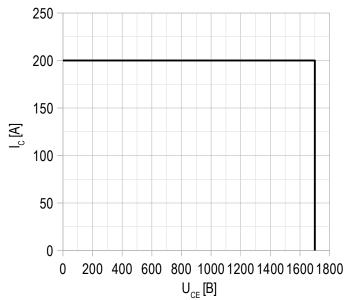

Информационный лист IGBT модуля

Рисунок 9 – максимальное переходное тепловое сопротивление.

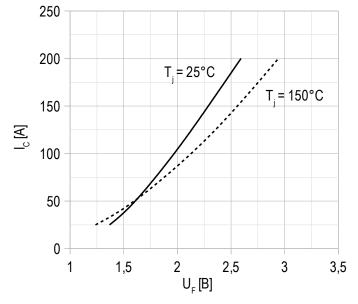

Единичный импульс; $U_{GE} = +15 B$.

Рисунок 10 - область безопасной работы при выключении.

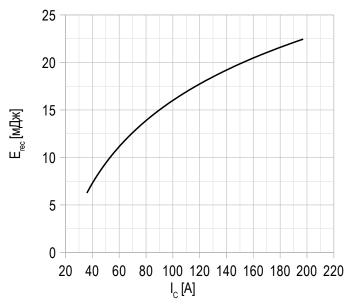
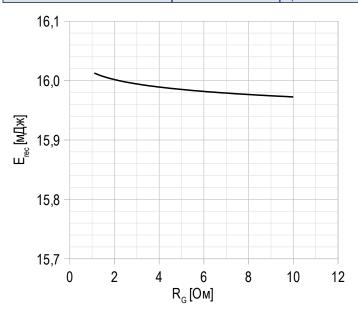

 $U_{CE\ max}$ = 1700 B; U_{GE} = ±15 B; $I_{C\ max}$ = 2* $I_{C\ nom}$; R_G = 2.2 OM; L_s = 56 H Γ H.

Рисунок 11 – типичная прямая характеристика, FRD.

 $U_{GE} = 0 B$.


Рисунок 12 – типичная энергия рассеиваемая при восстановлении от тока коллектора, FRD.

 $\begin{array}{l} U_{GE} = \pm 15 \; B; \\ U_{CE} = 920 \; B; \\ L_s = 56 \; \text{H} \Gamma \text{H}; \\ R_{G \; \text{on}} = 2.2 \; \text{OM}; \\ T_{vj \; (\text{max})} = 150 ^{\circ} \text{C}. \end{array}$

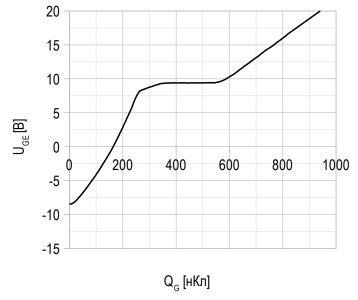
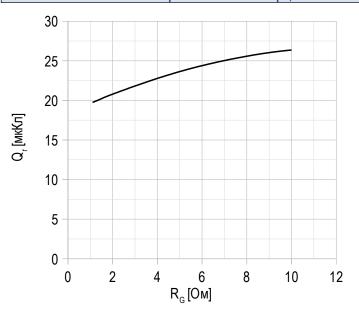
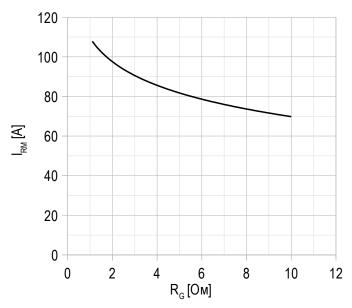

Информационный лист IGBT модуля

Рисунок 13 – типичная энергия рассеиваемая при восстановлении от сопротивления в затворе, FRD.



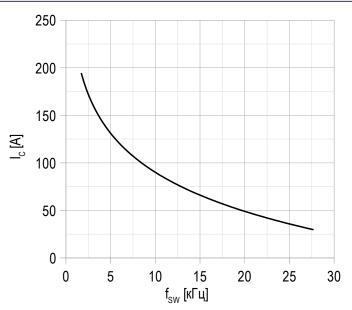
 U_{GE} = ±15 B; U_{CE} = 920 B; $I_{C \text{ max}}$ = 100 A; L_s = 56 H F H; $T_{V_j \text{ (max)}}$ = 150°C.

Рисунок 15 – типичная характеристика заряда затвора.



 I_C = 100 A; U_{CE} = 920 B; U_{GE} = -8÷15 B. Рисунок 14 – типичная зависимость заряда обратного восстановления от сопротивления в затворе, FRD.

 $U_{GE} = \pm 15 \text{ B};$ $U_{CE} = 920 \text{ B};$ $I_{C \text{ max}} = 100 \text{ A};$ $L_s = 56 \text{ HFH};$ $T_{vj \text{ (max)}} = 150 ^{\circ}\text{C}.$


Рисунок 16 – типичная зависимость тока обратного восстановления от сопротивления в затворе, FRD.

 U_{CE} = 920 B; U_{GE} = ±15 B; L_{s} = 56 H Γ H. $T_{v_{j}\,(max)}$ = 150°C.

Информационный лист IGBT модуля

Рисунок 17 – максимальная зависимость тока коллектора от частоты.

Скважность 50%; U_{CE} = 920 B; T_{c} = 80 °C; $T_{vj\;(max)}$ = 175 °C.

Габаритные размеры: тип корпуса — FA

Руководство по маркировке

<u> </u>								
MIFA	-	НВ	17	SA	-	100	N	
MIFA								Тип корпуса IGBT модуля: FA
		HB						2 ключа в схеме полумост
			17					Номинальное напряжение (U _{CES} /100)
				SA				IGBT+FRD модификация чипсета
						100		Средний ток
							N	Климатическое исполнение: умеренный климат

Информация, содержащаяся в данным документе, защищена авторским правом. В интересах улучшения качества продукта ПРОТОН-ЭЛЕКТРОТЕКС оставляет за собой право вносить изменения в информационные листы без предварительного уведомления.