

Информационный лист IGBT модуля

Низкоиндуктивный модуль высотой корпуса 17 мм

1700 B 600 A

Особенности чипов

- IGBT чип
 - о низкое значение U_{CE(sat)}
 - о длительность КЗ 10 мкс при 150°С
 - квадратная область RBSOA при 2хІс
- FRD чип
 - о быстрое и мягкое восстановление
 - о низкое падение напряжения

Особенности конструкции

- медное основание
- Al₂O₃ DBC подложки
- разварка силовых шин медной проволокой
- улучшенная стойкость к термоциклам
- соответствие RoHS
- низкое значение индуктивности

Типовые применения

- приводы двигателей переменного тока
- инверторы напряжений для солнечных панелей
- системы кондиционирования воздуха
- преобразователи высокой мощности и ИБП
- инверторы ветрогенераторов

Предельно допустимые значения параметров

Параметр	Обозн.	Условия	Знач.	Ед.
IGBT				
Напряжение коллектор-эмиттер	U _{CES}	U _{GE} = 0.	1700	В
Максимально допустимый постоянный ток	I _{C 25}	$T_{vj (max)} = 175$ °C; $T_c = 25$ °C.	795	Α
коллектора	I _{C 80}	$T_{vj \text{ (max)}} = 175^{\circ}\text{C}; T_c = 80^{\circ}\text{C}.$	600	Α
Максимальный повторяющийся импульсный ток коллектора* ¹	I _{CRM}	$I_{CRM} = 3 \times I_{C \text{ nom}}; t_p = 1 \text{ MC}.$	1800	Α
Длительность импульсного тока короткого замыкания	t _{psc}	T_{vj} = 25°C; U_{GE} = ±15 B; U_{CE} = 1000 B; $R_{G \text{ on}}$ = $R_{G \text{ off}}$ = 1.5 Om.	10	МКС
длительность импульсного тока короткого замыкания		T_{vj} = 150°C; U_{GE} = ±15 B; U_{CE} = 1000 B; $R_{G \text{ on}}$ = $R_{G \text{ off}}$ = 1.5 Om.	10	WING
Напряжение затвор-эмиттер	U _{GES}		±20	В
Рабочая температура в области перехода кристалла	T _{vj (op)}		-40+150	°C
Обратно-параллельный диод.				
Повторяющееся импульсное обратное напряжение	U _{RRM}	U _{GE} = 0 B.	1700	В
Максимально допустимый постоянный прямой ток	I _{F 25}	$T_{vj \text{ (max)}} = 175^{\circ}\text{C}; T_{c} = 25^{\circ}\text{C}.$	604	Α
•	I _{F 80}	$T_{vj \text{ (max)}} = 175^{\circ}\text{C}; T_{c} = 80^{\circ}\text{C}.$	461	Α
Повторяющийся прямой импульсный ток ^{*1}	I _{FRM}	$I_{FRM} = 3 \times I_{F \text{ nom}}; t_p = 1 \text{ MC}.$	1800	Α
Рабочая температура перехода	T _{vj (op)}		-40+150	°C
Модуль				
Температура хранения	T _{stg}		-55+50	°C
Напряжение пробоя изоляции	U_isol	AC sin 50 Гц; t = 1 мин.	4000	В

^{*1} Длительность импульса и частота повторения должна быть такой, чтобы температура перехода не превышала Туј тах.

MIDA-HB17SM-600N

Информационный лист IGBT модуля

Характеристики

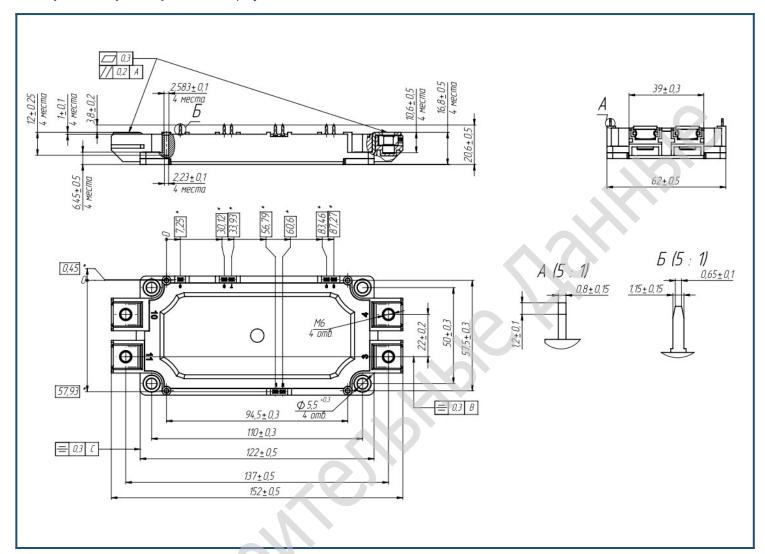
Попомотр	Обозн. Условия				E-		
Параметр	Обозн.	Условия	мин.	тип.	макс.	Ед.	
IGBT							
Напряжение насыщения	11	U_{GE} = +15 B; I_{C} = 600 A;	T _{vj} = 25°C	-	2.45	-	В
коллектор-эмиттер	U _{CEsat}	t _u = 1000 мкс.	T _{vj} = 150°C	-	3.30	-	В
Пороговое напряжение затвор-эмиттер	U _{GE(th)}	$I_C = 24 \text{ mA}; U_{CE} = U_{GE}; T_{vj}$ $t_u = 2 \text{ mc}.$	5.70	5.90	6.10	В	
Ток утечки коллектор-эмиттер	I _{CES}	$U_{CE} = 1700 \text{ B};$ $t_u = 50 \text{ Mc}; U_{GE} = 0.$	T _{vj} = 25°C T _{vj} = 150°C	-	11.00 1.50	300 5.00	мкА
Ток утечки затвор-эмиттер	I _{GES}	$U_{CE} = 0$; $U_{GE} = \pm 20$ B; T_{vj} $t_u = 30$ Mc.	-	15.00	250	нА	
Входная ёмкость	C _{ies}	U _{CE} = 25 B; U _{GE} = 0 B;	-	237.60	-	нФ	
Обратная передаточная ёмкость	Cres	f = 1 МГц; Т _{vi} = 25°C.			1.17	_	нФ
Ооратная передаточная сыкоств		$I_C = 600 \text{ A}; \ U_{CE} = 920 \text{ B};$		_		· -	
Заряд затвора	Q _G	U _{GE} = -8+15 B.			3800	-	нКл
Встроенный резистор затвора	R _{Gint}	T_{vj} = 25°C.		-	1.60	-	Ом
Время задержки включения	t _{d(on)}		T _{vj} = 25°C	-	350	-	нс
	*d(OII)		T _{vj} = 150°C	- ^	370	-	
Время нарастания тока коллектора	t _{ri}	U _{CF} = 920 B;	$T_{vj} = 25^{\circ}C$	-	96	-	
		U _{GE} = ±15 B;	T _{vj} = 150°C	-	123	-	
Энергия потерь при включении	Eon	$I_{C \text{ max}} = 600 \text{ A};$	$T_{vj} = 25^{\circ}C$,	135	-	мДж
	-011	$R_{G \text{ on}} = 1.5 \text{ Om};$	$T_{vj} = 150^{\circ}C$	-	235	-	нс
Время задержки выключения	$t_{\text{d(off)}}$	L _s = 56 нГн.	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$	-	620 700	-	
_			T _{vi} = 25°C	-	545	-	
Время спада тока коллектора	t _{fi}		$T_{vj} = 150^{\circ}C$	-	800	-	HC
0	E _{off}		T _{vi} = 25°C	-	165	-	
Энергия потерь при выключении			T _{vj} = 150°C	-	220	-	мДж
Пороговое напряжение коллектор-эмиттер	U _{CE0}	U _{GE} = +15 B; T _{vj} = 150°C I _{CE1} = 150 A; I _{CE2} = 600 A	-	-	0.85	В	
Динамическое сопротивление	r _{CE0}	$t_u = 1000 \text{ MKC}.$,	-	-	4.20	мОм
Тепловое сопротивление		DC; I _{test} = 1.5 A;					
переход-корпус	R _{th(j-c)}	U _{GE} = +15 B.		-	-	0.045	К/Вт
Обратно-параллельный диод.							
		I _F = 600 A;	T _{vi} = 25°C	-	2.55	-	В
Постоянное прямое напряжение	U _F	$U_{GE} = 0$; $t_u = 1000$ MKC.	T _{vj} = 150°C	-	3.00	-	В
		52 - / W	T _{vi} = 25°C	-	340	-	HC
Время обратного восстановления	t _{rr}	U _{CE} = 920 B;	T _{vj} = 150°C	-	800	-	HC
14 × 5		U _{GE} = ±15 B;	T _{vi} = 25°C	-	460	-	A
Импульсный обратный ток	I _{RM}	$I_{C \text{ max}} = 600 \text{ A};$	$T_{vj} = 150^{\circ}C$	-	430	-	A
0	Qr	R _{G on} = 1.5 Om;	T _{vi} = 25°C	-	85	-	мкКл
Заряд восстановления		L _s = 56 нГн.	T _{vj} = 150°C	-	170	-	мкКл
Энергия потерь при обратном	_		T _{vi} = 25°C	-	60	-	мДж
восстановлении	E _{rec}		T _{vj} = 150°C	-	115	-	мДж
Пороговое напряжение	U _(T0)	T _{vi} = 150°C; U _{GE} = 0; I _{F1} =	,	-	-	0.87	B
Динамическое сопротивление	r _T	I _{F2} = 600 A; t _u = 1000 мк	-	-	3.69	мОм	
Тепловое сопротивление		DC; I _{test} = 1.5 A;					
переход-корпус	R _{th(JC-D)}	U _{GE} = 0 B.		-	-	0.080	К/Вт

MIDA-HB17SM-600N

Информационный лист IGBT модуля

Модуль								
Connection de la	D-	T _{vi} = 25°C.	R _{P10/11-3}	-	0.95	1.00	мОм	
Сопротивление выводов	R _{Pxy}	Tvj - 25 C.	R _{P10/11-4}	-	0.68	1.00		
Паразитная индуктивность модуля между силовыми выводами	L _{Pce}			-	22.00	-	нГн	
Connection to the state of the	Rt	T _{vj} = 25°C	4850	-	6225	Ом		
Сопротивление термистора		T _{vj} = 100°C	475	-	554			
Коэффициент температурной чувствительности	B _{25/50}	$R_2 = R_{25} \exp [B_{25/50}]$ (1 $T_1 = 298,15 \text{ K}$	-	3375	-	K		
Тепловое сопротивление корпусоснование	R _{thCH}	для модуля		-	0.009	0.014	К/Вт	
Момент затягивания винтов корпуса	Ms	к охладителю М5		3	-	6	Н*м	
Момент затягивания на силовых	Mt	к клеммам М6		3		6	Н*м	
выводах	IVIţ			J 3		- 0	I I M	
Macca	W				-	360	Γ	

[&]quot; - " — данные будут уточняться по мере набора статистики и проведения дополнительных испытаний.


Примечания:

- Рабочая температура корпуса и изоляционных материалов не должна превышать T_c = 125°C макс;
- Рекомендуемая рабочая температура кристалла T_{vj op} = -40...+150°C.

MIDA-HB17SM-600N

Информационный лист IGBT модуля

Габаритные размеры: тип корпуса — DA

Руководство по маркировке

MIDA	-	НВ	17	SM	600	N	
MIDA							Тип корпуса IGBT модуля: DA
		HB					2 ключа в схеме полумост
			17				Номинальное напряжение (U _{CES} /100)
	\mathcal{A}			SM			IGBT+FRD модификация чипсета
					600		Средний ток
						N	Климатическое исполнение: умеренный климат

Информация, содержащаяся в данным документе, защищена авторским правом. В интересах улучшения качества продукта АО «Протон-Электротекс» оставляет за собой право вносить изменения в информационные листы без предварительного уведомления.