

Информационный лист plug & play IGBT драйвера

Типовое применение

- Преобразователи для солнечной и ветроэнергетики
- Источники бесперебойного питания (ИБП)
- Электротранспорт
- Преобразователи частоты
- Активные выпрямители

DI216-17-O-1 двухканальный plug and play IGBT драйвер, предназначенный для IGBT-модулей типа MIXM и напряжением до 1700 В.

Особенности

- Двухканальный IGBT драйвер
- Класс IGBT до 1700 V
- Максимальный импульсный ток управления ±16 А
- Выходное напряжение управления затвором +15/-9 V
- Оптический интерфейс управления
- Испытательное напряжение изоляции 4 кВ АС
- Частота ШИМ до 15 кГц
- Защита транзистора от КЗ с безопасным выключением
- Защита от пониженного напряжения питания
- Компактная конструкция 100х67х38 мм

Предельно допустимые значения параметров

Параметр	Обозн.	Условия	Значение	Ед. изм.
Напряжение питания	U _{SUP}	4/0)	15.5	В
Напряжение входных сигналов	$U_{\text{IN_A/B}}$		15.5	В
Выходной импульсный ток	I _{out}		±16	Α
Частота ШИМ	f _{SW}	Заряд затвора Q _G = 10200 нКл	15	кГц
Напряжение изоляции	U _{ISOL}	Первич. к вторичной, 60 сек	4 000	B rms
Мощность	Pout	На 1 канал	3.6	Вт
Стойкость dU/dt, вход-выход	dU/dt	Первич. к вторичной	50	кВ/мкс
Максимальное напряжение шины DC	U _{DC}		1100	В
Максимальное напряжение коллектор-	U _{CE}		1700	В
эмиттер	OCE		1700	Ь
Рабочая температура	T_{OP}		-40+85	°C
Температура хранения	T _{STOR}		-40+85	°C

Характеристики

Папачати	Обозн	Vananus	Значение			Ед.
Параметр	О003Н	Условия	Мин.	Тип.	Макс.	изм.
Напряжение питания	$U_{\mathtt{SUP}}$		14.5	15	15.5	В
Порог срабатывания защиты от пониженного напряжения	U _{UVLO}	Порог выключения 13.7 В Порог включения 14.3 В	13.7		14.3	В
Ток холостого хода	I _{s(idle)}	Без нагрузки		240		мА
Максимальный ток потребления	I _{s(max)}	f _{sw} = 15 кГц Q _G = 10200 нКл		690		мА
Выходное напряжение при включении	$U_{G(on)}$			15		В
Выходное напряжение при выключении	$U_{G(off)}$			-9		В
Длина волны, используемая при передаче и приеме сигнала	λ			660		НМ
Опорное напряжение для монитора DESAT	$U_{\text{CE(ref)}}$			8.2		В
Время задержки на срабатывание монитора DESAT	t _{bl(VCE)}			8		мкс
Время задержки включения сигнала ошибки	t _{bton}			500		НС
Время блокировки управления каналом	t _{btoff}			1		МС

Информационный лист plug & play IGBT драйвера

Помомоти	06000	Условия	Значение			Ед.
Параметр	Обозн		Мин.	Тип.	Макс.	изм.
Минимальный номинал резистора затвора включения	R _{G(on)}			1		Ом
Минимальный номинал резистора затвора выключения	R _{G(off)}			1		Ом
Длина пути тока утечки по воздуху между первичной и вторичной стороной драйвера	I _{clear(PS)}			7.7		ММ
Длина пути тока утечки по воздуху между вторичными сторонами драйвера	I _{clear(SS)}			5.8	0	ММ
Bec	W			91		Г

Режимы работы драйвера:

1. Нормальная работа

В режиме нормальной работы драйвера при подаче светового импульса на оптический вход верхнего и нижнего каналов (HS/LS) происходит включение IGBT. В случае возникновения нештатной ситуации светодиод оптического выхода перестаёт светиться. Входной сигнал управления блокируется, пока не будет устранена причина нештатной ситуации. Диаграмма, поясняющая работу драйвера, приведена на рисунке 1.

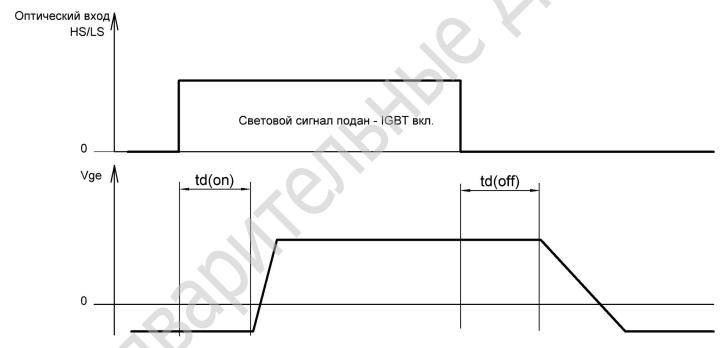
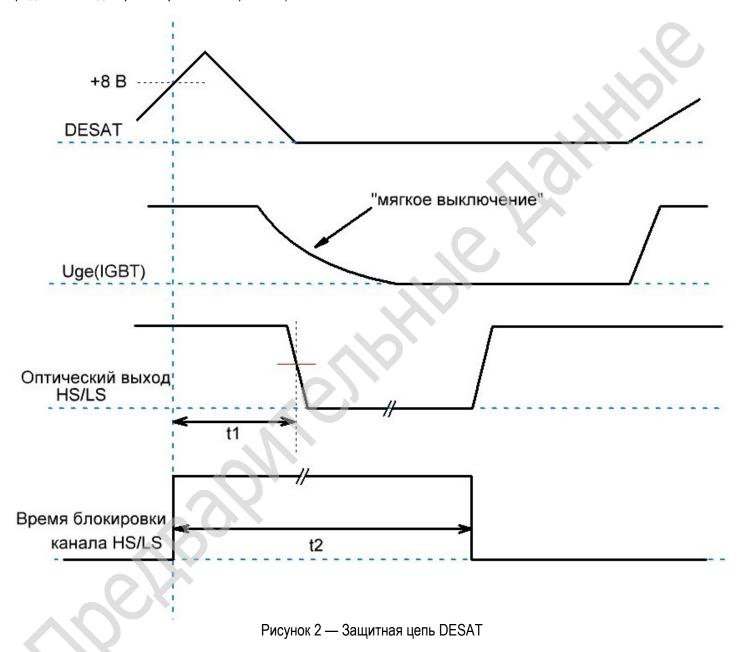


Рисунок 1 — Режим нормальной работы драйвера

2. Возникновение ошибок

При возникновении нештатной ситуации оптический выход ERROR HS/LS перестает подавать сигнал. Возникновение нештатной ситуации возможно по одной или нескольким причинам:

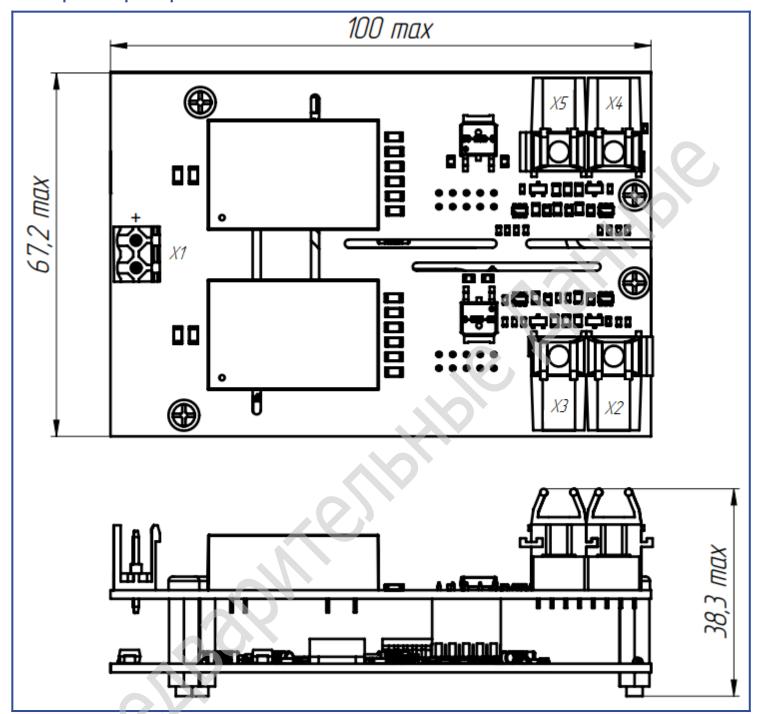
- 1. Пониженное напряжение питания верхнего (HS) или нижнего канала (LS).
- 2. Авария по превышению по току (DESAT).
- 3. Авария по превышению температуры подложки модуля R_{TD} .


2.1 Защита от пониженного напряжения

В случае если напряжение питания U_{SUP} опустится ниже +13.7 В драйвер перейдет в состояние ошибки и заблокирует входные сигналы управления, IGBT модуль будет выключен через резистор затвора Rg off. Для выхода из состояния ошибки необходимо поднять напряжение питания U_{SUP} до значения +14.3 В.

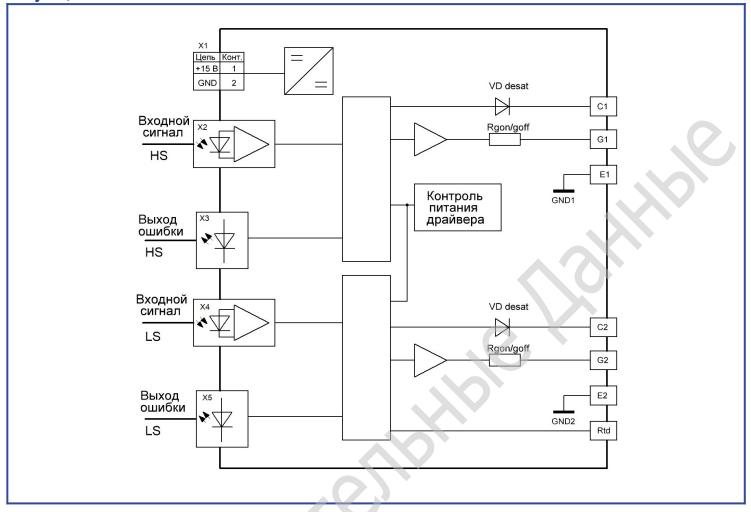
2.2 Защита от токов короткого замыкания и выход из насыщения транзистора (DESAT)

Цепь DESAT является защитной цепью драйвера, позволяющая защитить IGBT модуль от токов высокой амплитуды. Цепь с задержкой $t_{\text{bl(VCE)}}$ после начала включения IGBT начинает контролировать падение напряжение IGBT транзистора между выводами коллектор-эмиттер. В случае если падение напряжения превысит значение $U_{\text{CE(ref)}}$, драйвер выключит IGBT модуль при помощи функции «мягкого» выключения и заблокирует входные сигналы управления на время t_{btoff} . Выход драйвера ERROR HS/LS будет переведен в состояние ошибки. На рисунке 2 представлена диаграмма работы защитной цепи DESAT.


- t1 время задержки включения сигнала ошибки $t_{\text{bton}}500~\text{hc}$
- t2 время блокировки управления каналом t_{btoff} 1 мс

2.3 Защита от превышения температуры

Защита по превышению температуры реализована при помощи контроля показаний NTC термистора модуля. В случае если сопротивление NTC термистора R_{TD} опустится ниже порогового значения, драйвер перейдет в состояние ошибки и заблокирует управление. Ошибка будет сброшена автоматически по достижении сопротивления NTC термистора соответствующего допустимой температуре.



Габаритные размеры

Функциональная схема

Описание входного разъема (X1 - 2EDGV-5.08-02P-1-4)

Nº pin	Входной разъем	№ pin	Входной разъем
1	Питание +15 В	2	GND

Описание входного разъема (HFBR-2531Z)

Разъем HFBR-2531Z (X2 – верхний канал, X4 – нижний канал) — приёмник входного сигнала управления.

Описание выходного разъема (HFBR-1531Z)

Разъем HFBR-1531Z (X3 — верхний канал, X5 — нижний канал) — передатчик сигнала ошибки.

Руководство по маркировке

			_						
DI	2	16	-	17	-	0	-	1	
DI									IGBT драйвер
	2								Количество выходных каналов
		16							Максимальный импульсный выходной ток
				17					Класс IGBT модуля
						0			Оптический интерфейс
								1	Исполнение для IGBT модулей типа MIXM

Информация, содержащаяся в данном документе, защищена авторским правом. В интересах улучшения качества продукта АО «Протон-Электротекс» оставляет за собой право вносить изменения в информационные листы без предварительного уведомления.